
Distributed Real-time Forecasting Framework for
IoT Network and Service Management
Diogo Ferreira

Instituto de Telecomunicações
DETI - University of Aveiro

Portugal

Carlos Senna
Instituto de Telecomunicações

Aveiro
Portugal

Susana Sargento
Instituto de Telecomunicações
DETI - University of Aveiro

Portugal

Abstract—For efficient network management, it is important to
monitor and analyse the data, particularly big data applications
based on time series, in terms of trends and correlations, to
predict network problems and be able to react preventively.
Machine learning techniques can help but, given the amount
and complexity of the algorithms and metrics available, the use of
these techniques is laborious and requires specialized knowledge.
This paper proposes a framework for distributed real-time time
series forecasting with the goal to make predictions for various
dynamic systems simultaneously and provide straightforward
horizontal scaling, increased modularity, high robustness and a
simple interface for users. Moreover, the proposed framework
also enables the creation of ensemble algorithms, combining the
results of multiple predictors, without changes on each individual
predictor component. To demonstrate the functionalities of our
framework, we show how simultaneous predictions can be made
about the number of Internet sessions, using a real data stream
from users of the buses in the Porto city.

Index Terms—Time series prediction, Forecasting, 5G, Net-
work Monitoring, Network Management, Machine Learning.

I. INTRODUCTION

In the last few years, deep learning architectures have shown
the capability to predict the expected activity of the dynamic
systems, predict anomalies or learn new behaviours of these
systems in real-time. However, it is still hard to make efficient
predictions using machine learning algorithms due to the
complexity associated with the configuration and the training
of the models. This paper proposes a framework that makes
the prediction task of multiple time series systems easier, being
able to make predictions in real-time using a microservices’
architecture. Moreover, it is able to build an ensemble predictor
that performs better than the individual prediction components.
The predictions are made through an uniform interface that
simplifies the implementation details of the various predictors.

To demonstrate the proposed framework, we consider a real
vehicular scenario with more than 600 public buses in the
city of Porto [1], where the goal is to predict the number
of WiFi sessions per hour in the buses, and therefore, the
required bandwidth in the network. The obtained results show
that the framework is able to provide the ensemble predictions
without any change in the individual predictors, estimating
and predicting the behavior of bus users, estimating traveler
routes, QoS of the Internet service, traffic conditions, among
others [2], thereby improving network management.

II. RELATED CONCEPTS

Our proposed framework focuses on the data prediction,
allowing the framework to be domain-independent and en-
abling the data prescription analytics to be done by a domain-
specialized client of the framework.

Lately, several forecasting approaches were tested to predict
sewer overflow [3]: wavelet neural network [4], and gated
recurrent units (GRU) [5]. The LSTM and GRU achieved
better results for multi-step-ahead time series prediction, with
GRU with a faster learning curve.

At Uber [6], it was developed a forecast model for multi-
step time series forecasting that can handle multivariate inputs,
to forecast the driver demand for ride sharing on challenging
days, such as holidays, where the uncertainty for classical
models was high. The new forecasting algorithm showed major
improvements (2 to 18% of increase in accuracy) in the
forecast when compared with a previous model. The work in
[7] presents an architecture that comprises batch processing
and real-time analysis. However, it is a general architecture
for IoT use cases, and not applied to time series forecasting.
Moreover, it is applied independently for each use case. Our
proposed approach can be used for different types of time
series predictions simultaneously in a straightforward way,
without any modification of the API. In [8] it was presented a
conceptual general framework that splits the machine learning
pipeline in four steps: data collection, preprocessing, learning
and interpretation. In our framework, the data collection and
interpretation phases are from the responsibility of the service
client, preventing the architecture from being an end-to-end
framework and turning it into a more flexible and agnostic
framework to the data sources and possible interpretations.
The most similar work to ours is the one in [9], where
the complex implementation of machine learning algorithms
is tackled with a service-oriented data-centric architecture,
where the machine learning approaches are encapsulated in
reusable and extensible microservices. Just like in our work,
the configuration of the microservices is done over a REST
interface, and there is a training service to improve the models
over time. However, there are differences in the architecture
and in the implementation. Our framework is focused on
forecasting values, and because of that it has a simpler API
for forecasting, a dedicated database for real-time values and978-1-7281-4973-8/20/$31.00 © 2020 IEEE

other implementation differences. Moreover, we do provide
real-time predictions and ensemble approaches.

As far as we know, we could not find in the literature
a framework for real-time forecasting. Our framework is
modular in its components, since it is implemented with mi-
croservices, and it is able to train and use multiple prediction
models simultaneously, an essential characteristic for big data
architectures when there are many time series systems.

III. FRAMEWORK ARCHITECTURE OVERVIEW

In a large network, it is required to monitor many different
network metrics from various slices in real-time, to be able to
improve the network as fast as possible and prevent network
problems. Besides real-time forecasting, our framework is also
capable of performing multiple forecasts, with a distributed
architecture. For a 5G core network with multiple slices, it is
of high importance to forecast network metrics separately for
each slice, to perform slice-specific actions such as inter-slice
resource management or routing modifications. Our proposed
architecture allows such division for a large number of slices,
according to the physical resources available. In many cases
it is more efficient to combine prediction strategies in an
ensemble to achieve better results. With the proposed frame-
work, it is also straightforward to create ensemble predictions
(predictions with the results of other predictors). The frame-
work includes a message transformer, useful for combining the
result of different predictors, or for changing the predictions.
The modularity of the framework is adequate for enforcing
data privacy policies. The predictor components, where the
data is stored, can be relocated to a computational resource
with reinforced security.

The high-level view of the prediction framework, depicted
in Figure 1, is composed of five main components: the
Prediction API, the Predictor Message Broker (PMB), the
Metric Prediction Component (MPC), the Metric Message
Transformation Component (MMTC) and the Metric Predic-
tion Orchestrator (MPO).

The Prediction API is the interface that allows a client to:
(T1) predict a value for a time series system/metric; (T2) train
the predictor for a given metric; (T3) save new time series data
for later training; and (T4) change the training parameters. The
Prediction API is a REST microservice that encapsulates in a
simple and convenient way the functionalities of the predictors
without any operability loss, to be used for non-experts.

All tasks are available as REST endpoints, and they receive
the name of the predictor as a parameter. For the task (T1),
the client should send the current value of the time series
to be available for the predictor to use it, along with their
timestamp and a list of additional attributes, if needed. The
list of additional attributes is optional and depends only on
the specific predictor. The API will obtain the result of the
predictor and return it to the client, along with the timestamp
of the predicted point and any additional attributes. The same
input attributes are needed for task (T3), but the API saves the
point and it does not return data to the client. The parameters
that must be sent for the task (T2) are the start and end date

Fig. 1. High-level view of the prediction architecture.

of the data to consider for the training phase, besides any
additional attributes. Finally, for the task (T4), the parameters
are the timestamp of the next training, the period between
two training phases, the data period that should be considered
for each training and optional additional attributes. Other
endpoints are also accessible to rebuild or clear the internal
state of the predictor (only applicable when the predictor
depends on previous values), and to obtain information about
the predictor configurations.

The Predictor API receives the requests from external
clients and, according to an internal message protocol, sends
a message to the Predictor Message Broker (PMB). PMB
forwards the message to the corresponding metric predictor
or message transformation component, enabling the multicast
distribution of messages, allowing it to build several prediction
components for the same metric, each one with a different
prediction model.

The core component of the framework is the Metric Pre-
dictor Component (MPC). Each instance of the MPC is
responsible for predicting the time series data for a given
dynamic system/metric. The MPC is composed by four sub-
components: Metric Predictor (MPC-MP), Metric Predictor
Message Broker (MPMB), Predictor Training (MPC-PT), and
Time-series Persistence (MPC-TsP).

The MPMB is the internal message broker of the predictor
component and it routes messages between the three sub-
components: MPC-MP, MPC-PT and MPC-TsP. The MPC-PT
does online or offline training of the model to update it with
the newly received data. For offline training, the training task
parameters (date of the next training, training data window,
etc.) can be adjusted via the Prediction API. The new model
will be uploaded to the MPC via MPMB, the internal message
broker. The MPC-TsP stores the data to optimize the read and
write operations for time-series data, to be used when training

the model.
To enable an ensemble prediction, it is also needed to

perform a reduction step, to join the predictor results and per-
form the adequate transformation. The Metric Message Trans-
formation Component (MMTC) performs that transformation
by receiving the messages in the prediction message broker
and applying custom functions for each predictor component
messages, before inserting the transformed messages into the
broker. In our use case the transformer will be used to create
an ensemble prediction.

The instances of the metric predictor and the transformation
components are orchestrated by the Metric Prediction Orches-
tration Component (MPO). The MPO has two internal compo-
nents: the Monitoring and the Configuration and Management.
The monitoring component can access the logs of the predictor
and transformer (the logs are sent to the message broker) and
the exchanged messages, to better understand the current state
of operation of the various components. The configuration and
management module is able to instantiate and manage the
life cycle of the predictor and the transformation components.
These components can be dynamically added or removed
when ordered by the prediction framework manager. The
configuration and management component is able to manage
the created instances of metric predictors and transformations,
ensuring their availability and reliability, restarting them when
they crash. When the instances of metric predictors and trans-
formations start their execution, they establish a connection
with the message broker (PMB), to be able to report their
activity to the monitoring component.

The IoT communication infrastructure in Smart Cities sce-
narios requires high throughput where failures or high latency
may happen. To address these requirements, the implementa-
tion of the Predictor API and its components provide fault
tolerance, disaster recovery, low response times and high
scalability. The proposed architecture has the following char-
acteristics to enable a resilient and distributed framework: a
simple and flexible API to be used for clients that do not
need to understand the internals of the predictor; easy addition
and removal of predictors; creation of ensemble predictions by
taking into account the predictions made by multiple models;
distributed prediction and training; horizontal scaling; and real-
time prediction - the predictions are distributed and performed
in real-time, providing a constant prediction of the gathered
metrics.

IV. USE CASES AND RESULTS

The proposed framework is used in a specific 5G network
management use case, where the network is divided into slices
[10]. The number and the dimension of the slices is variable
and depends on the configuration done by the configuration
manager and the needs of each slice. We consider three
slices: S1 - vehicle-to-infrastructure communication; S2 -
control of safety-critical missions (vehicle-to-vehicle commu-
nication, remote surgery, public safety platforms, etc.); and S3
- human-machine interaction (virtual reality, high-resolution
video streaming, etc).

Fig. 2. Number of WiFi sessions per hour in the public buses.

The three slices have different functional requirements: the
slice S1 can have a high number of connected devices in a
small area (e.g. people connected to the Internet in a transit
bus), and the bandwidth of the slice must be adjusted according
to the needs of the devices, but without surpassing the needs
of other higher priority slices; the slice S2 must have high
availability, high reliability and low latency, while most of the
times it does not need high bandwidth; and the slice S3 is
characterized by real-time data responsiveness and high speed
data access. For each slice it is needed a different set of Key
Performance Indicators (KPIs) to monitor its behaviour. The
use cases show that our predictor framework can be used by
the 5G core network orchestration to predict independently the
KPIs for each slice.

To test the framework, it is chosen the vehicle-to-
infrastructure slice (S1) to make predictions. In Porto, in
the largest mesh network of connected vehicles, more than
200 000 people enjoy free Wi-Fi every day in buses, taxis
and municipal service vehicles [1]. The KPI to predict is
the number of sessions for users in the public buses, which
corresponds to bandwidth requirements of the slice. The data
available is divided in train and test data. The train data is
composed of data from 69 days, while the test data has 14
days.

Figure 2 shows that, in the weekend days (25th of Novem-
ber, 1st, 2nd and 8th of December 2018), there is a lower
number of sessions than in the week days. Moreover, on
the week days there are two peaks per day in the number
of sessions, which represent the people’s routine of going to
work/school and coming from work/school (rush hour).

Different predictors are trained and tested individually in
parallel, and the performance metric is the Root Mean Squared
Error (RMSE) [11]. The three predictor models with lower
RMSE are used, which are described below. Other algorithms
were trained and tested to model the time-series data, such
as Stochastic Gradient Descent, SVM, AdaBoost, and XGB.
However, their achieved performance was worse than the three
predictor models chosen.

The first predictor uses a Feed-forward Neural Network.
The inputs of the predictor are the number of sessions in the
previous hours. Different hyper-parameters are tested, such as:

Fig. 3. Number of sessions per hour in 24 hours and the predictions made
by the three predictors, as well as the ensemble predictions.

(1) the number of inputs (number of previous hours); (2) the
differentiation applied to the input (instead of the raw values
of the number of sessions in the previous hours, provide as
input the difference on the number of sessions between a
specific hour and n hours earlier); (3) or the neural network
configuration, which varied from 1 to 4 feed-forward hidden
layers with different dropout rates, and from 20 to 200 neurons
per layer. Additional features were also tested, such as the day
of the week, the hour of the day or a flag to indicate if it
is a holiday (holidays have major impact on the number of
sessions in the public buses). The best result achieved had 12
hours as input, 1 session as the differentiation value, a neural
network with three hidden layers, each one with 200 neurons,
a dropout value of 0.2 applied to all hidden layers, and the
day of the week as additional feature, with a RMSE of 26.59
sessions per hour. A 24-hour sample of the predictions made
in the test set by this Feed-forward Neural Network predictor
can be seen in Figure 3, in the Predictor #1 values.

The second predictor uses LSTM layers instead of Feed-
Forward hidden layers, with the hyperparameter tests being
similar. The best achieved result has also 12 hours as input,
with no differentiation, with a network with only one hidden
LSTM layer with 200 neurons, with no dropout applied to the
layers, and a flag to indicate if it is a holiday as additional
feature, with a RMSE of 23.4 sessions per hour. A 24-hour
sample of this predictor can be seen in Figure 3, in the
Predictor #2 values (LSTM layers).

Finally, the third predictor has as input 42 features extracted
from the time-series, such as the maximum, minimum, median,
average or sum of the number of sessions over the previous
week of data. In all the tested variations of the algorithm, the
Random Forest provided the best results, with a RMSE of
29.19 sessions per hour. A 24-hour sample of this predictor
can be seen in Figure 3, in the Predictor #3 values.

Additional tests are performed with an ensemble of the pre-
vious models. The best results are achieved with the prediction
average of the three previous models presented. The ensemble
predictions achieved a RMSE of 22.11 sessions per hour.
These results are also shown in Figure 3 (Predictor ensemble
values), with the real values for the number of sessions per
hour.

V. CONCLUSION

This paper proposed a framework for distributed real-time
time series forecasting. The framework is characterized by
being simple to implement, flexible to the needs of the domain,
and scalable to be incorporated in big data architectures. It was
implemented and tested in a 5G scenario, with different par-
allel prediction approaches for the chosen KPIs and different
metrics, and considering different slices.

In this paper we discuss results from vehicle-to-
infrastructure slice, where the goal was to predict the number
of WiFi sessions per hour in the public buses of Porto city. The
model that provided the best results involved a combination of
three individual predictors, forming an ensemble algorithm. It
was shown that the framework was capable of easily providing
the ensemble predictions without any change on the individual
predictors, improving modularity.

Future work will consider the parallel support of different
slices, development of network policies, and the use of the
framework for other areas, such as anomaly detection based
on the predicted values or characterization of a time series
stream.

ACKNOWLEDGMENT

This work is supported by the European Regional Devel-
opment Fund (FEDER), through the Regional Operational
Programme of Lisbon (POR LISBOA 2020) and the Com-
petitiveness and Internationalization Operational Programme
(COMPETE 2020) of the Portugal 2020 framework [Project
5G with Nr. 024539 (POCI-01-0247-FEDER-024539)].

REFERENCES

[1] P. M. Santos et al., “PortoLivingLab: An IoT-based sensing platform
for smart cities,” IEEE Internet of Things Journal, vol. 5, pp. 523–532,
apr 2018.

[2] J. Pereira, L. Ricardo, M. Luı́s, C. Senna, and S. Sargento, “Assessing the
reliability of fog computing for smart mobility applications in vanets,”
Future Generation Computer Systems, vol. 94, pp. 317 – 332, 2019.

[3] D. Zhang, G. Lindholm, and H. Ratnaweera, “Use long short-term
memory to enhance internet of things for combined sewer overflow
monitoring,” Journal of Hydrology, vol. 556, pp. 409 – 418, 2018.

[4] A. K. Alexandridis and A. D. Zapranis, “Wavelet neural networks: A
practical guide,” Neural Networks, vol. 42, pp. 1 – 27, 2013.

[5] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[6] N. Laptev, J. Yosinski, E. L. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” in Proceedings of the
Thirty-fourth International Conference on Machine Learning, ICML’17,
2017.

[7] P. Ta-Shma et al., “An ingestion and analytics architecture for IoT
applied to smart city use cases,” IEEE Internet of Things Journal, vol. 5,
pp. 765–774, apr 2018.

[8] D. Djenouri, R. Laidi, Y. Djenouri, and I. Balasingham, “Machine
learning for smart building applications: Review and taxonomy,” ACM
Computing Surveys, vol. 52, 02 2019.

[9] M.-O. Pahl and M. Loipfinger, “Machine learning as a reusable mi-
croservice,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, IEEE, Apr. 2018.

[10] 3GPP, “System architecture for the 5G system (5GS),” 2017.
[11] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast

accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679
– 688, 2006.

