A Forecasting Approach to Improve Control and
Management for SG Networks

Diogo Ferreira(:), André Reis

Abstract—In 5G networks, time-series data will be omnipresent
for the monitoring and management of network performance
metrics. With the increase in the number of Internet of Things
(IoT) devices, it is expected that the number of real-time time-
series data streams will increase at a fast pace, making forecasting
essential for the proactive successful management of the network.

In this paper, we discuss to use both linear and non-linear
forecasting methods, including machine learning, deep learning,
and neural networks to improve 5G networks’ management. For
this purpose, we design and implement a real-time distributed
forecasting framework, used to make simultaneous predictions
of different network performance metrics, and with different
learning algorithms. By using our framework, we compare the
use of forecasting methods in two network scenarios, in a
real vehicular network and in a 4G network, representing two
different slices in a 5G network. We also integrate our framework
in a 5G architecture.

Using the best forecasting models assessed previously, we pro-
pose a dynamic threshold algorithm for multi-slice management,
to ensure that the resources of each slice are updated according to
the slices’ needs, while avoiding congestion and saving resources
for other slices. The experimental results show that it is possible
to forecast the slices’ needs and congestion probability, selecting
the best forecasting approach or an ensemble of the best ones,
and act accordingly in the network to optimize its management.

Index Terms—S5G Management, Forecasting, Machine Learn-
ing, Neural Networks, NFV, SDN, Slicing Optimization.

I. INTRODUCTION

The effort made in recent years by the research commu-
nity and the Telecom industry in defining a new network
architecture in the S5th generation of communications that
supports the new set of requirements is finally reaching the
market [1]. Due to the networks’ dynamic load and flex-
ible topology, forecasting of the network state is a must
to ensure that the user requirements are met. Automation
of the network management is also mandatory, here made
only possible thanks to advances in virtualization, mainly in
Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) [2].

An accurate and autonomous traffic forecasting is essential
for many traffic management decisions in a network, such as
traffic accounting, short-time traffic scheduling, long-term ca-
pacity planning, network design or network anomaly detection,
and even multi-slice management in 5G networks [3][4]. With
the scale and complexity expected for 5G networks, where
flexible networks and their services are instantiated on de-
mand, there is no time to react to an anomaly on the network,

D. Ferreira and S. Sargento are with DETI, University of Aveiro, Portugal
({diogodanielsoaresferreira, susana}@ua.pt).

C. Senna, A. Reis and S. Sargento are with Instituto de Telecomunicacdes,
Aveiro, Portugal ({cr.senna, andrebragareis} @av.it.pt).

, Carlos Senna

, Susana Sargento

a congestion situation, and other impairments. It is essential
to predict the required resources, their anomalies, and prevent
them from occurring or changing the network proactively.
Forecasting methods are an important tool to predict the needs
of dynamic networks, and provide optimization in a multi-slice
approach.

Forecasting methods can be divided into linear and non-
linear. Linear forecasting methods, such as Autoregressive
Integrated Moving Average (ARIMA) and Holt-Winters al-
gorithms, have been used by network operators to forecast
network KPIs. However, with the recent advances in Machine
Learning, mainly in Deep Learning [3]], studies show that non-
linear forecasting methods, such as neural networks, produce
more accurate forecasts than linear forecasting methods [6],
[7]. These approaches have already been used, very recently,
in the new 5G network concepts of different verticals through
multiple slices [8]][9]; however, they have not considered an
autonomous management approach.

In this work, we discuss the use of linear and non-linear
forecasting algorithms to improve multi-slice management in
5G networks, with varying hyper-parameters. For this purpose,
we design and implement a real-time distributed forecasting
framework, used to make simultaneous real-time predictions
of different performance metrics and through different algo-
rithms, including an ensemble of the best forecasting algo-
rithms.

We consider two vertical scenarios with real data as multiple
slices in a 5G network: a real vehicular network [10], and
a 4G mobile operator network. The best forecast achieved
in both scenarios is used to study the autonomic multi-
slicing, considering two different verticals with their 5G slice,
by dynamically forecasting their needs, dynamically allocate
resources for the slices, providing both multiplexing and inde-
pendence between slices, and preventing network congestion.
The results show that it is possible to forecast the congestion
and act accordingly in the network to improve its performance
through a dynamic and autonomous resource management.
Using these scenarios, we demonstrated that the prediction
of network metrics, besides helping the network administrator
to understand the future trends of the network, can also be
used to perform autonomic improvements in the network. This
approach has been integrated in a 5G architecture.

The novel contributions of this article are the following:

o Extensive evaluation of prediction approaches for two
different networks with real data: a vehicular network
and a 4G operator network;

« Extensive search and test of hyper-parameters in machine
learning and deep learning approaches;

https://orcid.org/0000-0001-7295-8339
https://orcid.org/0000-0002-9709-5231
https://orcid.org/0000-0002-6791-4291
https://orcid.org/0000-0001-8761-8281

o Feature-based testing of a broad number of feature com-
binations;

o Real-time distributed forecasting framework, with simul-
taneous real-time predictions of different performance
metrics, through different algorithms, including an en-
semble of the best forecasting algorithms;

o Dynamic threshold algorithm that takes advantage of the
forecasts of the next time slot to adapt the network
resources in an multi-slice 5G management;

o Integration of the Predictor framework into a 5G ar-
chitecture, consuming KPIs from the Monitor/Assurance
component, evaluating these KPIs alone or in an aggre-
gated way, to alert the management components such
as Orchestrator and Policer, about unexpected behaviour.
Thus, we show how our framework can support proactive
congestion management in 5G slices.

The remainder of the article is organized as follows. Section
IT addresses the relevant related work. Section III presents
the forecasting algorithms, while Section IV presents and
discusses the results. Section V presents the prediction frame-
work, and section VI depicts the integration of our framework
in a 5G architecture. Finally, section VII presents the conclu-
sions and the future work.

II. RELATED WORK

Traffic forecasting, along with classification, were two of
the earliest machine learning applications in the networking
field. Forecasting is a sub-discipline of prediction in which
the predictions are about the future, on the basis of time-
series data. Depending on the data available and the sampling
period (the time between samples), it may be adequate to use
a different forecasting type. For example, if the data samples
have a sampling period of a day, it may be useful to use
middle-term or long-term forecasts. If the data has a sampling
period of a few seconds and it is only available from a period
of a month, it is more adequate to perform short-term or real-
time forecasts [[11]]. In this work we use forecasts with a lead
time of one hour (short-term forecasts).

The ARIMA model is a stationary stochastic process, and
contains two polynomials: an autoregression polynomial and
a moving average polynomial. The Holt-Winters algorithm
is a forecasting technique from the family of Exponential
Smoothing methods [12]. Non-linear forecasting methods usu-
ally involve an Artificial Neural Network (ANNs). An ANN
is a machine learning model based on the human brain. The
ability to learn non-linear functions in an efficient and stable
manner makes ANNs one of the most used techniques in
machine learning today. The most common type of ANNs
are Feed-Forward Neural Networks [6]], where the information
flow is unidirectional and there are no feedback loops (Section
[-B).

The work in [[13]] compared the forecasts of the transfer rate
in a network link, through different types of ANNs and statis-
tical prediction time-series algorithms. The ANNs that were
applied used multi-task and multiresolution learning. To create
multiple representations of the training data, the Haar wavelet
[14] was applied to the network traffic, to perform multi-
resolution decomposition. The results of the work showed that,

again, non-linear traffic forecasting approaches based on ANN
outperformed linear forecasting models.

An Echo State Network (ECN) [15] is used as the ANN
model. An ECN is a recurrent neural network with three
layers: the input layer, the reservoir layer and the output layer.
In this study, five mobile network services were chosen to
forecast the traffic volume in a city: MMS, web, streaming
media, QQ (the most popular instant messaging application
in China) and XunLei (the most popular P2P application in
China).

In [16], a hidden Markov model based on algorithms such
as Kernel Bayes Rule (KBR) and Recurrent Neural Network
(RNN) with Long Short Term Memory unit (LSTM unit) is
used to train the model and to apply the model to predict
the future traffic. The metric that is collected and used to
forecast future network traffic is the flow count. In the study,
the KBR performed better than the forecast using recurrent
neural networks. The paper showed promising results in the
use of flow-level statistics to forecast the traffic volume.

Network traffic classification helps to manage network re-
sources, such as bandwidth requirement and fault diagnosis.
Machine learning traffic classification techniques can be inter-
esting options, by recognizing statistical features (attributes) of
the traffic (such as packet size, inter-packet arrival times and
packet lengths), and clustering network traffic in clusters that
have similar traffic patterns. In [[17]] the authors propose unsu-
pervised K-means and Expectation Maximization algorithm to
cluster the network traffic application based on similarity be-
tween them. However, they do not discuss the implementation
of the proposed algorithms. In [18]], the proposed approach
takes advantage of the network traffic decomposition that can
be done, in linear and non-linear components. That decompo-
sition is done using a Discrete Wavelet Transform. After that,
the linear component is forecasted using the ARIMA model,
and the non-linear component is forecasted using a Recurrent
Neural Network (RNN), more adequate to non-linear data. The
forecasts of both components are then averaged to achieve
the final forecasts. The proposed technique outperforms the
forecasts of ARIMA and RNN individually.

RNN lies in the deep learning group. Deep learning ap-
pears to be a viable approach for the network operators to
configure and manage their networks in a more intelligent
and autonomous fashion [6]. Applications of Deep Learning
in network traffic control are relatively recent and garnered
minor attention [19]. In [20], the work focuses on reducing
the training time of Long Short-Term Memory Neural Network
(LSTM). Besides being the best approach for network traffic
forecasting, it takes excessive and computational resources
to train. The results showed that, even only 35% of neural
connectivity shows a satisfactory performance in the traffic
forecasting, while being much easier to train.

In [21]], the authors introduce an automated Network Re-
source Allocator (NRA) system. It is engined by Machine
Learning algorithms to predict traffic demands, identify a
topology to deliver incoming traffic according to an SLA
and operational costs. The NRA takes measurements from
GStreamer players and network probes, and predicts network
KPIs such as path bandwidth and latency directly related

to QoE. The work in [22] presents and compares different
machine learning models for the analysis of cellular network
traffic, addressing two different problems: detection of anoma-
lies generated by smartphone apps and prediction of Quality
of Experience (QoE) for popular apps. The work considers
an extensive battery of machine learning models, including
single models as well as machine learning ensembles such as
bagging, boosting and stacking, and are evaluated using real
cellular traffic measurements captured at operational networks
and at the end devices. It is an interesting work but is specific
for cellular traffic, while the work we proposed in this article
is applicable to any type of network.

Considering multi-slice resource management, recently
there has been a strong focus on this subject in the literature.
The article in [4] discusses the potential and critical role of
artificial intelligence for the management and operation of
mobile networks that implement network slicing. This work
describes practical deep learning architectures that can solve
multi-slices’ resource problems in different case studies, and
illustrates the high typical gain that can be expected from
integrating Al in network slicing. It concludes that AI has a
clear potential to become a cardinal technology for future-
generation zero-touch mobile networks. The work in [23]]
describes a network slicing management framework based on
complex network theory, which is referred to be appropriate to
massive slices environment for 5G UDN. This work considers
the management of massive slices and infrastructure resource
domains, control of resources competition and attack preven-
tion. However, this work is not implemented nor tested, so
that more insights can be retrieved from such approach.

Examples of multi-slice and end-to-end network slicing
algorithms are very recent and are presented in [24], [25],
[26], [27], [9], and [8]. The works in [24] and [9] use
reinforcement learning to assess the resources of the multiple
slices. The proposed algorithms are tested with simulated
results in [24] and with application-based traces available in
the Internet in [9]]. The first algorithm is compared with base
BS coverage algorithms, considering RAN-based approaches.
The algorithms in [25] and [8] are based on Deep Neural
Networks to forecast the resources in each slice. The work
in [25] tests the algorithm with an aggregation of hourly
traffics of OTTs for a period of 5 days and compares with
LSTM, while [8] considers simulated traffic and compares the
results with other deep learning approaches. Finally, the work
in [26] proposes a multi-resource allocation framework based
on the Ordered Weighed Average (OWA) operator, and tests
it with a subset of Amazon EC2 instances available in the
Internet; and [27] proposes an optimization model based on
Markov decision processes, with tests provided with simulated
data. These algorithms have a strong complexity and cannot
be implemented in real-time. Moreover, none of the previous
works are able to forecast simultaneously different algorithms
and metrics in a distributed approach, considering online real
traffic from different real networks, and integrated in a 5G
architecture approach.

Given the results obtained in the previous works, in this
work several forecasting methods will be tested in different
vertical slices in a 5G environment. Compared to previous

works, we assess the performance of different forecasting
approaches, using ARIMA as the benchmark, but we consider
a multi-slice 5G network scenario with both vehicular and
cellular networks. Moreover, we propose a framework to test
different approaches and performance metrics simultaneously,
including the ensemble of the best approaches, to provide
a real-time monitoring and management of the 5G network.
Finally, we propose dynamic and autonomous approaches
for the resource management of the multiple slices, while
improving resources and avoiding congestion.

III. FORECASTING METHODS

In this section we present linear and non-linear forecasting
methods, including Machine Learning, Deep Learning and
Neural Networks [6]], as well as its advantages and disadvan-
tages as tools to support network intelligence mechanisms.

A. Classical Machine Learning Methods using Time-lagged
Inputs

Another approach for building a model with the task of
predicting values is to use Classical Machine Learning (CML)
algorithms, an approach in which any type of neural network
or Deep Learning algorithm is excluded. In this paper, the
tested algorithms were: Linear Regression; Lasso; ElasticNet;
Stochastic Gradient Descent (SGD) Regressor; Support Vector
Regression; Random Forest; Gradient Boosting Regressor;
AdaBoosting Regressor (AdaBoost); and eXtreme Gradient
Boosting Regressor (XGBoost) [28]].

The Linear Regression, Lasso and ElasticNet are linear
approaches for modeling the relationship between a dependent
variable and independent variables. The Stochastic Gradient
Descent (SGD) regressor models a linear relationship min-
imizing a loss function with the use of SGD, an iterative
method for optimizing an objective function. Support Vector
Regression is based on Support Vector Machines (SVMs), an
algorithm designed to create a set of hyperplanes to be used
for classification or prediction. It is also possible to create
non-linear classifiers or regressors applying the kernel trick. In
the tests, the Radial Basis Function kernel was used. Random
Forest, Gradient Boosting Regressor, AdaBoost Regressor and
XGBoost are ensemble methods that take advantage of the
construction of multiple models to obtain better predictive
performance. Particularly, while Random Forest is a bagging
algorithm that trains multiple decision trees with different
subsets of the training set and each one vote with equal
weight, Gradient Boosting Regressor, AdaBoost Regressor
and XGBoost are boosting algorithms that train new model
instances focused on the prediction error of the previous
instances. These methods allow for the inclusion of external
features to the model, such as the hour of the day, which can
improve the overall accuracy of the algorithm.

B. Neural Networks

Neural networks are widely used for modeling and predict-
ing time-series data due to their capacity of learning complex
patterns. The parameters of the neural network are determined

only by the dataset and are not limited to any analytical model,
making this approach able to predict non-linear relationships in
the data and capable of achieving state of the art performance
with a high amount of data, when compared with classical
machine learning algorithms.

The neural network architecture is composed of nodes,
called neurons, each one with an activation function, that
defines the output of the neuron. In a Feed-forward Neural
Network (FNN), the neurons of each layer are connected with
all the neurons in the previous and next layer.

Neural networks use a set of variables to determine the
network structure, and another set of variables to determine
how the network is trained. These two sets of variables, known
as hyper-parameters, must be set before training. Two of them
are essential in the training phase: batch size and number of
epochs. The batch size is the number of training examples in
one forward and backward pass in the network. The number of
epochs defines the number of times that the learning algorithm
will work through the whole dataset.

For each model configuration several options can be set,
such as the number of hidden feed-forward layers, the number
of layers per neuron, the activation function of each neuron or
the Dropout value for each layer. Dropout is a neural network
mechanism to regularize the network and prevent overfitting
[29]. Just like for the classical machine learning methods, it
is possible to include external features. This method has the
ability to outperform the previous methods for most real-world
time-series forecasts. However, its biggest disadvantage is that
it is time-consuming and computationally-expensive to train
and forecast, when compared with the previous methods.

A Recurrent Neural Network (RNN) is a type of ANN that
takes advantage of internal memory to maintain a state with
information about the previous inputs. It is possible to maintain
or to reset the internal state between the processing of two
different inputs. If the state is reset, the recurrent network will
only maintain a state depending on the input values in the
input sequence.

With the use of RNNs it is possible to store information
from arbitrarily long time ago. This is an advantage over the
FNNs if there are any long-term dependencies that cannot
be learned by time-lagging the data and using it as input.
However, if that is not the case, the RNNs will perform the
same or worse than the feed-forward neural networks.

The Long Short-Term Network (LSTM) is a particular type
of RNN that prevents the exploding/vanishing problem, a
difficulty when training general RNNs that makes the update
of the network weights too big or non-existing. However, the
LSTM is more expensive and hard to train the network due
to the complex internal architecture of each neuron, making it
more time consuming and harder to find an optimal solution.

A stateful LSTM network stores not only the state of the
current batch, but also the state of the previous batches to
predict the output, while a non-stateful LSTM network resets
the internal states at every batch. Theoretically, a stateful
LSTM is able to learn long-term dependencies, even if they
are not fed directly in the same batch, while a non-stateful
LSTM only learns the dependencies for each input batch.

C. 1-D Convolutional Neural Networks

Convolutional layers have proven to be very effective in the
computer vision area, where the spatial locality of the pixels
can be used to reduce the computations needed to achieve
state-of-the-art performance in image recognition and image
classification tasks. Similarly, Convolutional Neural Networks
(convnets - ANN with convolutional layers) can be used
in sequence processing, extracting features from local input
patches and allowing for representation modularity and data
efficiency. The property of locality used in computer vision
problems can also be helpful in sequence processing, with
time being treated as a spatial dimension, like the height
or the width of a 2D image. Depending of the dataset, 1-
dimensional convnets can be competitive with RNNs or FNNs
in the prediction task, with a much cheaper computational cost.

Compared with the previous methods, the hyper-parameters
are the same, as well as the model configuration options, but
CNNSs have two other types of layers. A pooling layer can be
used to reduce the dimensionality of each feature map. For
regularization of the network, besides Dropout layers, Batch
Normalization [30] can also be used. Batch Normalization reg-
ularizes the network by reducing the internal covariance shift,
normalizing the output of a layer by subtracting the batch mean
and dividing by the batch standard deviation. The main goal of
the Batch Normalization, however, is not regularization, but to
accelerate the training of neural networks. The convolutional
layers are characterized, among other things, by the number
of output filters, the kernel size, the length of the stride and
the activation function.

D. Feature-based Methods

Instead of using the raw values from the time-series directly,
a set of features can be extracted from them. Those features
can be chosen by a domain expert to provide better insights
about the data. Using features extracted from the time-series
data for the forecasting instead of using raw lagged values
has some advantages: (1) the features can be adjusted and
optimized by a domain expert; (2) the number of features
is variable and sometimes it is possible to achieve similar
or better results with a much lower number of features;
(3) usually, it provides better results when there is no high
autocorrelation between lags of values in the time-series data
(when there is high variation in the data and it is hard to
visually detect patterns). However, this approach also has
drawbacks, mainly: (1) it has worse results when there is a
high autocorrelation between lags of values in the time-series
data (when it is possible to visually detect patterns in the data);
(2) it depends heavily on the ability of the domain expert to
extract the correct features for the prediction; (3) the task of
choosing the best features can be time-consuming and non-
optimal. The time-series features extracted from the data to
be the input of the learning algorithms are the following:

e maximum, minimum, average and standard deviation of

the values in the previous time interval;
« values above and below the average in the previous time
interval;
o median of the values in the previous time interval;

TABLE I
SUMMARY OF THE MAJOR DIFFERENCES AMONG THE PRESENTED
APPROACHES FOR TIME-SERIES FORECASTING.

[Approach [AR ML [NN [CNN [FBM |
Non-linear forecasting No - Yes Yes Yes
Fast Yes - No No -
Interpretable Yes - No No -
Pre-processing Dependent Yes | No No No Yes
Uses past values Yes | Yes | Yes Yes No
Uses external knowledge No No No No Yes

o sum of all values in the previous time interval;

e 0.25, 0.50 and 0.75 quantiles of the values in the previous

time interval;

« number of values in ranges in the previous time interval;

o position of the highest and lowest value in the previous

time interval;

o different variety of time periods, such as hour, day and

week.

The time intervals chosen to extract the features are the
previous day and the previous week. The forecasting algo-
rithms chosen were the previously presented algorithms in the
classical machine learning methods subsection (Section [[II-A)
and Neural Networks (Section [[II-B).

E. Summary

A comparison of the major differences among the presented
approaches for time-series forecasting (AR - ARIMA; ML
- Classical Machine Learning Methods using Time-lagged
Inputs; NN - Neural Networks; CNN - 1-D Convolutional
Neural Networks; and FBM - Feature-based methods) can be
seen in Table [I] (the symbol ’-” means that it depends on the
scenario).

The ARIMA approach is the only one that does not perform
non-linear forecasting, being ideal for periodical time-series or
time-series with a clear trend. The Neural Networks and 1-D
convolutional Neural Networks generally have bigger mod-
elling capabilities than classical machine learning algorithms,
at the cost of being slower and more difficult to interpret.
The Feature-based approach is the only one that uses external
knowledge, which is critical when the time-series values are
heavily influenced by external events.

Although the model with the best predictions in the test
set should be chosen, there are some practicalities that can
rule out some methods for being implemented in a forecasting
framework. If the scenario requires frequent retrainings, then
the ARIMA method can have difficulties in the long-term,
because it demands a full retraining (with all the data) every-
time, while other methods can be incrementally trained. If the
model needs to train fast with low resources, then ARIMA or
classical machine learning methods should be preferred over
Neural Networks.

IV. EVALUATION OF FORECASTING METHODS APPLIED IN
NETWORK SCENARIOS

In order to evaluate the methods previously presented to
produce forecasts, we used two network scenarios. In the first

scenario, we consider the number of sessions from a real
vehicular network. Our second scenario is a 4G network where
the dataset contains important Key Performance Indicators
(KPIs). The experiments carried out in different scenarios aim
to show the breadth and applicability of the proposed work,
and the extended support of these techniques for the multi-slice
resource management in 5G scenarios, where each network
represents a slice.

After an analysis of both datasets and the identification of
the metrics in both scenarios that correlate more to the required
network resources, the forecasting results will be presented
for the various methods with different hyper-parameters. An
analysis is also made to the hyper-parameters that produce the
best forecasts. The tests done on these two scenarios, address-
ing congestion management use cases and resource sharing in
a resource-constrained network, are based on the prediction
models for 5G network (Section , which may assist the
network operator to act more effectively and proactively.

To generate the predictions, it will be used the Python
programming language, using the statsmodel library for the
ARIMA implementation, the Scikit-learn library for the imple-
mentations of classical machine learning algorithms, and the
TensorFlow library for the neural network implementations.
The metric to measure the generated predictions will be the
Root Mean Squared Error (RMSE), as described in Equation
where y corresponds to the actual observations, 3 to the
predicted values and n is the number of predicted values.

()]

The time required to run the algorithms lies between tens of
seconds to a few minutes (up to 5 minutes), using a personal
laptop with 8 GB of RAM, an Intel Core i7-6500U processor,
and GeForce 940M as a Graphics card and implemented
with the Tensorflow library. This time is compatible to the
predictions required in a multi-slice 5G management.

A. Vehicular Network Dataset Analysis

Vehicle networks play an important role in a smart cities’
communication infrastructure. By analyzing the information
collected in VANETS, it will be possible to identify behavioral
patterns and pave the way for autonomous driving in the
advent of the 5G networks [31]]. Recently, free public Internet
access has been in an upward trend in public transportations
of developed cities. In Porto, in the largest mesh network of
connected vehicles in the world, more than 200 000 people
enjoy free Wi-Fi every day in buses, taxis and municipal
service vehicles [10].

The vehicular network dataset used in our experiments
contains the number of sessions per hour in the network
between the 17'" of September to the 8" of December 2018
in the Porto vehicular network. A user session is considered
from the moment that a User Equipment (UE) has access to the
Internet until its disassociation. The number of user sessions
is the metric chosen to forecast, because it can be used as a
rough estimate of network traffic volume.

700 o 0)) Oe:oo—a:oo

- @

E 0 | \ o Q ® [(©) Om:oo—zo:oo
[|

Ss00 || |l | : @ Olz:oo—la:oo

by |

.é 400 ‘ ‘ o‘ Q (O]

$ @ Wi 1'%

& 300 | I\

- \

2 200

£

>

Z 100

0 1 2 3 . 5 6 7
Timestamp

Fig. 1. Number of sessions per hour of one week in the vehicular network.

Figure |1| shows various data patterns in the 22-29 October
week. The weekend has significantly fewer sessions than
weekdays. In a day, there are two major peaks in the number
of sessions: the first is around 7h00 and the second is around
17h00, which is understandable due to the workers’ and
students’ schedules. There is a third minor peak around 12:00,
at lunch time. Our auto-correlation function calculates the
Pearson correlation coefficient [32] between the same data
distribution, separated by various time lags.

Analyzing the dataset, we identified peaks in lags that are
multiple of 24 hours, indicating that there is a high correlation
with the lag of 24 hours (a day). The highest peak has a lag of
168 hours (a week). These observations help to detect patterns
in the data: the peaks in the autocorrelation function indicate
similarity with the time interval of the number of lags. The
number of sessions is correlated with the number of sessions
in the previous days at the same hour in the previous week.

Because the data has daily and weekly patterns, it is not a
stationary process. Stationary processes are easier to model,
especially for linear forecasting models such as ARIMA. If
the data is not directly represented by a stationary process,
various types of differentiation can be made to approximate
a non-stationary process to a stationary process. For this
dataset, according to the time-series analysis previously done,
differentiation of one hour, a day and a week will be used in
the tests.

B. 4G network dataset analysis

The 5G networks are still far from wide availability, and
the process of migrating the current 4G to a 5G network
infrastructure will take years. Meanwhile, it is necessary to
monitor not only the 5G slices that will be used to support
the different verticals, for example vehicular and 4G operator
networks, but also 4G traffic, to be able to effectively provide
quality of service to the users of both networks. The dataset
used for the 4G forecasting has a set of KPIs that describe the
operation of a set of cells of an ISP in Portugal during 6 — 27
March of 2019. The interval period between each measurement
of a KPI is 1 hour, which means that there are 24 values for
each KPI for each cell every day.

The chosen KPI to forecast the 4G traffic is the maximum
number of connected users per hour (Figure [2). The data in
Figure [2| was normalized in percentage to remove sensitive
information about absolute values. There are several patterns

TABLE II
FIVE BEST RESULTS OF THE PREDICTION TASK WITH THE ARIMA
APPROACH.
VANET 4G
p|ld | q|RMSE | p|d]|q| RMSE
1 3 168 | 0 | 49.50 2 10| 4 | 260.39
2 2 | 168 | 2 | 49.62 310 2| 26143
3 1 168 | 3 | 49.62 2 10| 3 | 263.88
4 2 |1 168 | 3 | 49.63 4 10 | 2 | 264.08
5 4 | 168 | 1 | 49.71 2 10| 2 | 271.06

in the data that are important to mention. There is a daily
pattern: the number of maximum connected users increases
every day until around 12 a.m., and then decreases in the
afternoon. There is also a weekly pattern, where the weekends
typically have a lower maximum number of connected users
than the same hour in the workweek. Finally, there is a pattern
in the data that can be explained by the monitoring of the KPI
of the cells. Everyday, the maximum number of connected
users at midnight is zero. This indicates that, at that time of
the day, no monitoring measurement is being done of this KPI
on the cells.

A seasonal decomposition using moving averages was done
using an additive model with a frequency of 1 week. Figure
shows 4 plots with the information of the original data,
captured trend, seasonality, and residuals from day 6 to day
27. The seasonality plot shows a trend of a lower maximum
number of users on the weekends (days 9 and 10, 16 and 17,
and 23 and 24). As with to the previous dataset, differentiation
of one hour, one day and a week will be used in the tests.

@ e B

% o 8 8
3

/oy

/

/

LY

2

g
A\
/
/

9

—— Seasonality |

(O NIR TARA

&
-3 o
%

27

\ N . M Residuals

FX \A NSNS NS\
¥ V % 1

17 19 21 23 2 27

Percentage of connected users per hour

Day of March, 2019

Fig. 2. Seasonal decomposition using moving averages with an additive
model, normalized in percentage.

C. Results with ARIMA and CML Methods

For the ARIMA approach, it is possible to set the hyper-
parameters p (number of lags included in the model), d (degree
of differentiation) and ¢ (size of the moving average window).
The parameters p and ¢ will vary between O and 5; the
parameter d will vary among the values O (none), 1, 24 and
168, because of the hourly, daily and weekly patterns of the
data. For both datasets, the higher the parameter p, the lower
the average RMSE. For the parameter g, the same can be
said for the vehicular network dataset. However, for the 4G

TABLE III
FIVE BEST RESULTS FOR EACH SET OF TESTS USING DIFFERENT
ADDITIONAL FEATURES FOR BOTH NETWORKS.

TABLE IV
FIVE BEST RESULTS ON THE TESTS USING A FEED-FORWARD NEURAL
NETWORK FOR THE VEHICULAR NETWORK.

| || VANET || Best d ! Hidden Neurons Dropout RMSE
< T Results Layers | per Layer Value
Test || Algorithm Diff. | Lag | RMSE
1 1] 12 4 200 0.2 31.44
1 Random Forest 0 48 35.66 3 0T34 5 300 0 3758
2 XGBoost Regressor 0 24 36.36 3 1 12 3 200 02 32.30
3 Random Forest 0 12 36.43 4 1] 24 4 200 0.2 32.34
4 Random Forest 0 48 36.57 S 0] 12 2 200 1.0 32.74
5 XGBoost Regressor 0 24 36.70
4G
Test Algorithm Diff. | Lag | RMSE are achiev'ed with 'one—lag differentiation and 24 lags as input.
1 SVR i W 12749 The algorithms with the best results overall are the SVR, the
3 Random Forest I 34 132: 36 XGB Regressor and the Gradient Boosting Regressor.
3 Random Forest 0 12 132.85
4 XGBRegressor 1 24 134.91 D. Results with Neural Networks
5 Gradient Boosting R. 1 24 135.44 In the tests with the Feed-forward Neural Networks (FNNs)

network, the value with lowest RMSE is when ¢ = 2. The
five best prediction models for both networks are the ones in
Table For the vehicular network, it can be seen that the
differentiation parameter is 168 for the five best results, and
for the 4G network it is 0. The differentiation seems to have
higher importance for an accurate ARIMA prediction model
than p or g parameters.

In the comparison with classical machine learning methods,
the parameter d will be tested with the values 0, 1, 24 and 168
(the same as for the ARIMA differentiation) and the ! (lag
number) will vary among 1, 12, 24, 48 and 168. Additional
features have been added to the models. Three features of the
data (day of the week, workday, and hour of the day) were
considered useful to forecast the number of sessions in the
next hour, and their effect on the results was tested.

For the vehicular network, most algorithms have better
results when the differentiation lag is 168. However, three
ensemble algorithms (Random Forest, Gradient Boosting Re-
gressor and XGB Regressor) have better results when there
is no differentiation. These ensemble algorithms are able to
learn non-linearities in the data with the use of several machine
learning models, instead of models that are only able to capture
linear relations, where the data stationarity is needed, like
Linear Regression. The five best results with this approach
are presented in Table For the 4G network, the best
results have one hour as differentiation. The same happens
for other combinations of additional features. On average,
the higher the number of lags, the better the performance,
as expected. There is only slight improvement in going from
12 to 24. In the vehicular network, the best results have no
differentiation. The impact of the additional features is not
much, because the RMSE does not vary much. The best result
(RMSE of 35.66 session per hour) was achieved with only
the day of the week as additional feature, with the Random
Forest algorithm, no differentiation lag and with 48 lags as
input. In the 4G network, the best result (RMSE of 127.49
users per hour) is achieved with only the workday as feature,
with the SVR algorithm. Furthermore, most of the best results

for the vehicular network, the hyper-parameter d varied among
0, 1, 24 and 168, and the ! (lag number) varied among 4, 12,
24 and 168. 24 neural network configurations were tested,
which varied in the number of feed-forward hidden layers (1
to 4), in the number of neurons per layer (20 or 200) and
in the Dropout value (1 (None), 0.2 or 0.5). All the neurons
have Rectified Linear Unit (ReLLU) as the activation function,
with the exception of the neuron of the last layer, that has
no activation function. The batch size will be set to one, and
the Optimizer will be Adam [33]]. The neural network will be
trained for 500 epochs, and the presented RMSE will be the
lower RMSE in the cross-validation set along 500 epochs. In
the vehicular network all the five best results have either one
lag differentiation or no differentiation at all. Moreover, all
the five best results have as number of lags 12 or 24, and 200
neurons per layer. The same set of additional features as in
the previous subsection was tested with the best five results.

The five best results for the vehicular network with no
additional features are presented in Table along with their
hyper-parameters. All the five best results have either one lag
differentiation or no differentiation at all. Moreover, all the
five best results have as number of lags 12 or 24, and 200
neurons per layer.

For the 4G network prediction task, similar hyper-
parameters were tested, and the workday feature has the
lowest average RMSE and also the best result overall (115.54
connected users per hour). It is an improvement from the result
of RMSE of 127.49 users per hour in the previous section.

The Recurrent Neural Networks (RNNs) tests are similar to
the FNNs tests with the exception of some hyper-parameters.
Due to the time that LSTMs take to train, the hyper-parameter
space must be reduced. For both network datasets, the d will
be fixed to 0, due to in the previous subsection, the best
values for the differentiation were O or 1, with little variation
between them. The [will vary between 12, 24 and 168. The
models tested for the vehicular network have between one
and three LSTM hidden layers, with 20 or 200 neurons each
layer. The Dropout mechanism will have Recurrent Dropout
enabled (varying its values between 1 (no Dropout) and 0.2),
and stateful/non-stateful LSTMs will also be tested.

In the five best results for the vehicular network, tests with
the lag number of 12 had much better results than the tests with
the lag number 24. The stateful forecast results are identical
to the non-stateful forecast results, which indicates that all
the information needed for the forecast of the next value is
in the previous 12 lag values. Another indication is the fact
that the results are very similar to the results with the feed-
forward neural networks. In terms of features, only the feature
of the workday alone improved the results, in contrast with
previous subsections, where the best results come from the
tests with only the workday feature. All other tests showed a
degradation of the RMSE. The lowest RMSE achieved was of
31.36 sessions per hour, worse than the best result achieved
with the FNNs.

The models tested for the 4G network have between one
and four LSTM hidden layers, with 20 or 200 neurons each
layer. The Dropout mechanism will have Recurrent Dropout
fixed at 0.2 and the tests were done only with non-stateful
LSTM layers, due to the small effect of their variation in the
previous tests, and to reduce the hyper-parameter space. For
additional features tests, it was used 5 sets. In the first test
there were no additional features, and on the following tests,
the additional features were varied. The results for RMSE were
113.70, 122.91, 122.85, 118.48, and 121.56 respectively. The
best result of 113.70 was achieved without additional features.

In the Convolutional Neural Network (CNN) methods, d
was set to 1, and the [varied among 12, 24 and 168. The
stride length of all convolutional layers used is of size one, and
the activation function used is ReLU. The number of output
filters varied between 20 and 200 and the kernel size was set
to four. The tests varied the number of convolutional hidden
layers from one to four, with and without max pooling layers
between convolutional layers. Networks with and without
batch normalization between convolutional layers were also
tested. Finally, two types of layers were tested: Flatten, to
reshape the output of a convolutional layer from a 3D in a
2D array by concatenating the result of multiple filters, and
Global Average Pooling 2D, that does the same transformation
from a 3D array into a 2D array by selecting the maximum
value for each array in the third dimension.

As an example, for the vehicular network (Table @, the
results with Global Max Pooling layer have the worst results,
due to its inability to learn patterns in the data. On the
other hand, the tests with the Flatten layer and without batch
normalization have the best results from the test set. Analyzing
the lag number, the higher the lag number, the worse the
overall results, with the best lag number being 12. Given that
this method is adequate only for sequences, no additional
features were tested. These tests are very time-consuming
(taking approximately ten times more the time to train than
a FNN for the same number of epochs and same number of
neurons) and the results were also not satisfactory in the 4G
network (the lowest RMSE was 38.59, much bigger than most
RMSEs achieved using FNNs (Table [[V)).

E. Other approaches with ensemble models

We approached the improvement of the prediction accuracy
using ensemble models. An ensemble combines the result of

TABLE V
BEST RMSE RESULTS IN THE CONVNET TESTS AND ITS
HYPER-PARAMETERS, IN DESCENDING ORDER, FOR THE VEHICULAR

DATASET.
Best Flatten/ Batch

Results || Global Max Pooling | Norm l RMSE
1 Flatten FALSE | 12 38.59
2 Flatten FALSE | 12 38.87
3 Flatten FALSE | 12 39.60
4 Flatten FALSE | 12 41.41
5 Global Max Pooling FALSE | 12 | 41.71

several models to achieve more accurate forecasts. The best
feed-forward network model with only the previous number of
sessions per hour as input and external features (feed-forward
neural network with one-lag differentiation, a lag number of
12 and the weekday as additional feature) was combined with
the best model that has as input only time series features
and external features (Random Forest with all features except
quantile features). The combination of the two models was
done with an average of the forecasts. The vehicular network’
RMSE was of 28.44 sessions per hour, a new best record.

One a way to improve the results is to add another predictor.
Another test was made with both predictors used before,
and with the best model using the recurrent neural networks
(recurrent neural network not stateful, with a lag number of
12 and with the workday as additional feature). The output
is now the average of the forecasts of the three models. The
RMSE for the vehicular network was 26.22 sessions per hour,
which surpasses the previous best result.

In the 4G network, the models used in these tests will be
the best feed-forward neural network model (RMSE of 115.54
users per hour), the best LSTM model (RMSE of 113.70
users per hour) and the best result with the Classical Machine
Learning models (SVR algorithm, with an RMSE of 127.49).
Because the neural network models have better results than the
SVR algorithm, an ensemble of only both neural networks will
be tested. Then, an ensemble of the three models will also be
created to check if the SVR forecasts improve the final result.

The forecasts with the SVR algorithm increase the RMSE
error. The best result in the cross-validation set is achieved
with an ensemble of the feed-forward neural network and the
LSTM network, where it is possible to achieve an RMSE as
low as 104.94 connected users per hour.

The final tests are performed by training the models with
the best results, considering the training and cross-validation
sets, and testing with the test set. Five different models will
be used for the tests for both networks:

1) best feed-forward neural network (FFNN) configuration;

2) best recurrent neural network (LSTM) configuration;

3) algorithm with the best result of the classical machine
learning approach;

4) ensemble with the best feed-forward neural network and
the best recurrent neural network;

5) ensemble with the best feed-forward neural network and,
the best recurrent neural network and the best result of
the classical machine learning approach.

TABLE VI
RMSE RESULTS WITH THE TEST SET OF THE BEST FIVE TESTS IN BOTH
NETWORKS.
VANET 4G
Test Models RMSE RMSE
1 FFNN 26.59 153.47
2 LSTM 23.40 177.54
3 SVR 29.10 197.13
4 FFNN + LSTM 24.10 152.41
5 FFNN, LSTM, SVR 22.11 164.53

The results of the tests for the vehicular dataset (26 Nov
- 8 Dec, 2018) can be seen in Table and they show that
the RMSE improved from the previous best tests (previously
RMSE of 29.99, 31.36, 38.45, 28.44 and 26.82 sessions per
hour, respectively), due to the larger set of training data. For
a small margin, the recurrent neural network performs better
than the feed-forward network in the RMSE, as opposite to
the tests in the cross-validation set. The model ensembles, just
like in the tests done with the cross-validation set, outperform
the models separately. The best result was achieved with an
ensemble of the feed-forward network, the recurrent network
and the random forest algorithm, with an RMSE of 22.11

(Figure [3).

~
Q
=]

| Real values
| Predicted values

@
Q
=]

a
=3
=]

Number of sessions per hour
w B
o o
o (=]

N
Q
=]

=
5]
=]

=)

76 7 30 o4 06 08

o
Timestamp
Fig. 3. Ensemble model forecasts with three predictors in vehicular network.

In the results of the 4G network, on average, the error
is higher than in the cross-validation set, due to the data
distribution being less similar to the training set (26-31 March,
2019). The ensemble with the feed-forward neural network
and the recurrent neural network has the best result, just
like in cross-validation set (Figure f). The data in Figure [
was normalized in percentage to remove sensitive information
about absolute values.

Therefore, we deployed the best models for each scenario -
FFENN, LSTM and SVR for the vehicular dataset and FENN
and LSTM for the 4G network dataset. It is important to note
that the models with the best score may not be the chosen
models to deploy in the framework. As noted in Section [[II-El
there are other important metrics to take into account when
choosing a model, such as training time, prediction time,
resources needed to use the model, interpretability, etc. In the
case of ensemble models, like those that we have chosen, the
prediction time and the heavy use of resources must be taken

-
o
o

| Real values
I Predicted values

®
=]

o
=]

N
o

Percentage of connected users per hour
N
o
—

o

26 27 28 29 30 31
Timestamp

Fig. 4. Ensemble model forecasts with two predictors in 4G network.

into account. The proposed approach is able to configure the
metrics chosen to select the best model, and it is important to
leave it open to the network manager for custom configuration.

V. PREDICTOR FRAMEWORK

To be able to execute experiments with forecasting methods
to evaluate, simultaneously, the best alternatives to support
network management, we design and implement a Predictor
Framework (PF) [34]. The PF is able to test, in real-time,
different algorithms with different metrics, including ensem-
bles of the best algorithms. Its proposed architecture has the
following characteristics to enable a resilient and distributed
framework:

« simple and flexible API to be used for clients that do not
need to understand the internals of the predictor;

o easy addition and removal of predictors, according to the
needs of the clients;

« creation of ensemble predictions by taking into account
the predictions made by multiple models;

o distributed prediction and training — it is possible to
distribute the predictors in different systems, or even to
distribute the training phase and the prediction phase for
the same predictor, to allow for fast prediction and fine
tuning of the model;

« horizontal scaling - the predictor API and the message
broker can be replicated to handle the growing number
of predictors;

o real-time prediction - the predictions are distributed and
performed in real-time, providing a constant prediction
of the gathered metrics.

In our context, “clients” can be from policy or monitoring
instances doing management of 5G slices to dashboards for
visual monitoring of behavior.

The high-level view of the PF, depicted in Figure [3 is
composed of five main components: the Prediction API, the
Predictor Message Broker (PMB), the Metric Prediction Com-
ponent (MPC), the Metric Message Transformation Compo-
nent (MMTC) and the Metric Prediction Orchestrator (MPO).

The Prediction API is the interface that allows a client to:
(#1) train the predictor for a given metric; (#2) predict a value
for a time series system/metric; (¢3) save new time series data
for later training; and (#4) change the training parameters. The
Prediction API is a REST microservice that encapsulates in a

@
4
i
[Prediction API] MPO /N
- \‘
1| N
‘ PMB ‘ = [MPCM][MPCCM]
MPC N
[MPC-MP MMTC i
l [Message Transformator]
| MPMB

(et (e |

/

Fig. 5. Macro Architecture of the Predictor Framework.

simple and convenient way the functionalities of the predictors
without any operability loss, to be used by end-users.

All tasks are available as REST endpoints, and they receive
the name of the predictor as a parameter. For the task (¢1),
the client should send the current value of the time series
to be available for the predictor to use it, along with its
timestamp and a list of additional attributes, if needed. The
list of additional attributes is optional and depends only on
the specific predictor. The API will obtain the result of the
predictor and return it to the client, along with the timestamp
of the predicted point and any additional attributes. The same
input attributes are needed for task (¢3), but the API saves the
point and does not return data to the client. The parameters
that must be sent for the task (¢2) are the start and end date
of the data to consider for the training phase, besides any
additional attributes. Finally, for the task (#4), the parameters
are the timestamp of the next training, the period between
two training phases, the data period that should be considered
for each training and optional additional attributes. Other
endpoints are also accessible to rebuild or clear the internal
state of the predictor (only applicable when the predictor
depends on previous values), and to obtain information about
the predictor configurations. In contrast with the internals of
the architecture, which uses a publish-subscribe system, the
interaction between the external world and the API is done
using a request-response system. This is more adequate for
the client, since it makes single requests for predictions and
does not need to subscribe to any type of messages besides
the response to its predictions.

The Predictor API receives the requests from external clients
and, according to an internal message protocol, sends a mes-
sage to the Predictor Message Broker (PMB). This component
is responsible to, according to the recipient of the message,
forward the message to the corresponding metric predictor
or message transformation component. The broker enables
the multicast distribution of messages, allowing it to build
several prediction components for the same metric, each one
with a different prediction model. That is, the information
that comes from the monitoring system is distributed inter-
nally without any overhead for the slice (network) or other

services running on the slice. Besides, these predictions can
be combined to build an ensemble predictor that performs
better than the individual prediction components. To address
these requirements, the Predictor APl and Message Broker
(PMB) provide fault tolerance, disaster recovery, low response
times and high scalability. These functionalities are important
in high throughput scenarios, where failures or high latency
may happen.

The core component of the framework is the Metric Predic-
tor Component (MPC). Each instance of the MPC is responsi-
ble for predicting the time series data for a given dynamic
system/metric: it receives the messages directly from the
message broker and predicts the time series points. The MPC
is composed by four sub-components: Metric Predictor (MPC-
MP), Metric Predictor Message Broker (MPMB), Predictor
Training (MPC-PT), and Time-series Persistence (MPC-TsP).

The Metric Predictor Message Broker is the internal mes-
sage broker of the predictor component, and it routes messages
between its sub-components. The Predictor Training does
online or offline training of the model to update it with the
newly received data. For offline training, the training task
parameters (date of the next training, training data window,
etc.) can be adjusted via the Prediction API. The new model
will be uploaded to the Metric Prediction component via the
internal message broker. The Time-series Persistence stores the
data to optimize the read and write operations for time-series
data, to be used when training the model.

To enable an ensemble prediction, a reduction step is also
required to join the predictor results and perform the adequate
transformation. The Metric Message Transformation Compo-
nent performs that transformation by receiving the messages in
the prediction message broker and applying custom functions
for each predictor component message, before inserting the
transformed messages into the broker. The transformer can
also be used for other data transformations, such as data units
transformations, data anonymization or other scenarios. In the
use cases presented in this article, the transformer will be used
to create an ensemble prediction.

The instances of the metric predictor and the transformation
components are orchestrated by the Metric Prediction Orches-
tration Component (MPO), which has two internal compo-
nents: the Monitoring (MPCM) and the Configuration and
Management (MPCCM). The configuration and management
component is able to instantiate and manage the life cycle of
the predictor and the transformation instances. These instances
can be dynamically added or removed when ordered by the
prediction framework manager, ensuring their availability and
reliability, restarting them when they crash. The instances
of metric predictors and transformations (MMTC) start by
establishing a connection with the message broker (PMB)
and make the link with the monitoring component (MPCM)
to report their activity. MPCM accesses the logs and the
exchanged messages, assessing the current state of operation
of the instances, to flag MPCCM about anomalies (an instance
crash for example).

The process of training and testing with the framework will
be explained:

o Firstly, it is needed to create the MPCs, one for each

approach used, with its specific train and prediction
algorithms;

o If it will be used more than one MPC at the same time
(ensemble approaches), it is also needed to create an
MMTC to calculate a single prediction based on the
several predictions calculated by the MPC;

o To perform the training of the models, it is needed to
send a request to the Prediction API with the start and
end date of the training data. Each MPC will perform its
training separately and store the new model;

e To perform a prediction, it is made a request to the
Prediction API, that will send it to the PMB;

« The PMB will send the message to all the MPCs of that
metric, that will perform the prediction and send it to the
PMB;

o If there is an MMTC (for ensemble algorithms), it will
fetch the predictions and calculate a single result, that
will be sent to the Prediction API to create a response to
the user with the requested prediction.

The PF was designed to be easy to use (no requirements
on programming knowledge), easy to deploy, can be used in
automated deployment workflows, and lightweight to work in
slices. By enabling the execution of several containers, the
framework allows to predict different metrics of the network
simultaneously, such as the number of sessions, bandwidth,
delays, and others, being able to configure according to the
operators’ needs. The results that will be presented in the
next section, which depicts the integration of the prediction
framework in a 5G architecture, were obtained through the
use of our framework.

VI. DISTRIBUTED INTELLIGENCE IN 5G ENVIRONMENTS

The 5G architecture is defined to support connectivity and
data services, enabling virtualization of network functions and
software-defined networks, among other techniques. The 3rd
Generation Partnership Projecﬂ (3GPP) proposes a 5G system
architecture to leverage service-based interactions between the
network functions of the control plane [35]. Some of the main
components of this reference 5G architecture are the following:

« Policy Control Function (PCF): uses its information about
the slice usage (bandwidth, active services, clients, etc)
to manage the slice/network behaviour. PCF provides and
maintains the policy rules to control plane functions;

o Session Management Function (SMF): supports session
management, selection and control of user plane func-
tions, downlink data notification and roaming;

o User Plane Functions (UPFs): handles the user plane path
of Packet Data Unit (PDUs) Sessions. UPF selection is
performed by the SMF;

o Network Data Analytics Function (NWDAF): represents
operator managed network analytics logical control, and
provides slice specific network data analytics.

These components are directly related to our framework
(Section E) here called by Predictor Framework (PF). Our
PF can be seen as an implementation of NWDAF.

Ihttps://www.3gpp.org/

This architecture has been implemented in Mobilizer 5G
ProjectE] (Figure E]), a portuguese 5G project that aims to foster
5G implementation and deployment in Portugal. Our predic-
tion framework has been deployed in this architecture and
has been integrated with both Assurance and PCF modules.
These modules are implemented in Docker containers, and
orchestration, management, and automation of network and
edge computing services is performed through ONA}ﬂ

CoreDC

Policer E2E SO NFVO

Edge DC1 PF |

VidCod ﬁm . PCF

UPF g

3 = Assurance - SMF
Edge | DC2 : I

VidCod

UPF _‘ VidCod

| g

Fig. 6. Prediction framework integration in a 5G Architecture.

Figure [6] depicts a simplified version of the 5G architecture
deployed in our premises. To illustrate the prediction frame-
work functionalities, we exemplify a link congestion use case
of a virtual Video Coding (VidCod) scenario.

Policer, end-2-end Service Orchestrator (E2E SO) and Net-
work Function Virtualization Orchestrator (NFVO) are the
entities needed to orchestrate the VidCod services in Edge
DC1 and DC2.

The Prediction API of the PF receives KPIs from the Assur-
ance module, and activates the Metric Predictor Component
(MPC) through the Predictor Message Broker (PMB). MPC
evaluates the received KPIs against the expected behavior
model (learned over time), and if it recognizes a distortion
above the expected threshold (through the forecasting ap-
proaches), it signals the Prediction API to send an advertise-
ment about the predicted anomaly to the PCF. By predicting
that link 1 (L1 - red line in Figure [6) tends to become
congested, the PF signals the PCF when it is expected that L1
overload will occur. The PCF and SMF do all the preparation
for changing the traffic from L1 to L3-L2 (blue lines). The
intelligence of this operation lies in the fact that the PF does
not recognize anomalies when they are occurring, but rather
tries to predict the occurrence of the anomaly in the near
future. Upon receiving the prediction, the PCF, considering
the current slice status (bandwidth, services, options) can act
preventively by changing the slice policy, or even indicating
the need for more resources to the orchestrator. The result of
this joint operation Assurance-PF-PCF-SMF can prevent the

Zhttps://5go.pt
3https://www.onap.org/

anomaly from occurring and consequently maintain the slice’s
QoS and consequently the entire network.

With PF, it is possible to use a prediction instance for
each KPI or combine KPIs per prediction instance. This
combination can be used on all slices. In addition, by using
microservice-based construction, PF can be easily instantiated
in the creation of a new slice.

VII. USING THE PREDICTIONS TO IMPROVE A 5G
NETWORK

The aim of this section is to use the previous approaches
to act autonomously to improve the resource management of
a 5G network with multiple slices, a slice for the vehicular
network and a slice for the 4G operator network.

We consider two scenarios: in the first scenario, the network
has limited resources, and must be divided between those
resources for multiple slices as optimally as possible, maximiz-
ing the network utilization and minimizing the degraded net-
work sessions; the second scenario has the aim of preventing
network congestion while minimizing the use of resources for
each slice, managing dynamically the resources needed. These
approaches are tested considering the distributed intelligence
described in the previous section, through the integration of
the PF with the session and policy control functions, where
the slices’ resources are adjusted autonomously as a result of
the predictions in the PF.

The implementation and testing of the scenarios will be
done using the same data as described before, using the Python
programming language to analyze the results.

A. Dividing a Resource for Multiple Slices

In this scenario, the chosen network resource is the maxi-
mum number of sessions per hour in the network, which will
be limited to a maximum value. The maximum number of
allowed sessions will have to be split across all slices to reduce
the number of lost sessions in the network. This split can
be made statically (setting a fixed threshold for each slice)
or dynamically (adjusting in real-time the threshold for each
slice, according to demand). Three splitting algorithms will be
compared: a fixed-threshold algorithm, where the splitting of
the maximum number of sessions between the slices is done
with a fixed threshold for all slices, defined by an optimization
search on the past values of that resource for that slice; an
optimal dynamic threshold algorithm, that takes its decisions
of the splitting based on the future values of the metrics of
all slices (as if the forecasts were always exactly correct);
and a best-possible dynamic threshold algorithm, that makes
the threshold decisions based on the forecasts made for the
next hour of the slices. Furthermore, the maximum number of
sessions available for the network in the tests also vary from
0 to the maximum number of sessions needed for the network
to serve all users (when the number of sessions lost is 0).

The performance metric that is minimized for this problem
is the number of sessions above the threshold for that slice,
as represented in Equation [2| using Iverson bracket notation,
where ngs(x) is the number of sessions of a slice.

length(ns(x))

>

t=0
—threshold(x)[t][ns(x)[t] > threshold(x)[t]]

L(ns(x), threshold(x),t) = ng(z)[t]

2

In the dynamic threshold algorithm, the value of the thresh-
old will change according to the forecasts of the next hour,
to better adjust to the network traffic fluctuations, for better
utilization of the maximum number of available sessions in
the network. It is possible to set the minimum number of
sessions per slice, which prevents a forecast of a slice with a
low number of sessions from blocking the slice for accepting
new sessions.

To manage the resources of each slice, the dynamic thresh-
old algorithm is presented below (Algorithm [I). In this al-
gorithm: ps(z) is the prediction of required resources and
sessions for slice x; ming is the minimum resources and
number of sessions guaranteed in each slice z; NoS is the
number of active slices; R,,q, is the amount of physical
resources that can be divided through the different slices; and
ng(x) are the resources assigned to slice x.

Algorithm 1 Dynamic Threshold Algorithm
procedure DYNAMIC_THRESHOLD(ps,mings,NoS,Ryqz)
free_res = Rpap — », ming(z)
for z in NoS do
if ps(z) < ming(x) then
ng(x) = ming(x)

else 4
s (z) = ming(z) + % x free_res
end if
end for
Return n

end procedure

The dynamic threshold algorithm calculates the resources
assigned for each slice following two conditions: 1) if all
predictions for the next timeframe are lower than the minimum
resources assigned for that slice, it is assigned to that slice its
minimum resources; 2) otherwise, it is assigned to that slice
its minimum resources plus a number of additional resources,
based on the predicted required resources and the available
resources in the network.

We also consider a dynamic threshold algorithm where the
forecasts are the real values (to establish a baseline for the
best possible result).

The evaluation is performed by running the fixed and
dynamic algorithms. These algorithms are running by varying
the number of sessions available in the network (starting with
no session available to all the sessions available). We then
evaluate the percentage of sessions in the network above the
number of sessions allowed for each slice. Figure [7| shows
the results: the percentage of lost sessions decreases as the
number of sessions available in the network increases for
all algorithms, as expected. The fixed-threshold algorithm
performs worse than the dynamic threshold one, while the
dynamic threshold algorithm performs only marginally worse

Fixed threshold algorithm
Dynamic threshold algorithm with predicted values
Dynamic threshold algorithm with real values

(%)
&

I
o

IS
i

Sessions lost

42

%30 0335

0.340 0.345 0.350
Available sessions/Needed sessions in the network

0.355 0.360

Fig. 7. Percentage of sessions lost for different algorithms.

with the forecasts than with the real values. This result shows
the effectiveness of applying the dynamic threshold algorithm
with forecasts for a multi-slice network.

B. Preventing Network Congestion

In large core networks, the goal of the management may
be to give enough resources for each slice to provide to
its users the minimum congestion possible, while saving as
many resources as possible for other slices or for network
emergencies. Thus, the chosen resource is the maximum
number of sessions per slice. Because the available metrics
do not allow one to derive network congestion, we assumed
that the network is congested when the number of sessions per
hour is higher than 80% of the maximum value of the number
of sessions in the dataset. The test set used is the same week
of the data from both slices. Three evaluation methods will be
proposed to calculate the congestion in the network.

In the first method, all sessions above the threshold of 80%
of the maximum number of sessions in the dataset are counted
as congested sessions. The second method considers a reactive
action in the slice upon congestion. If the number of sessions
in the slice is above the threshold, the resources in the network
are adapted in the next time-frame to accommodate the value
of the number of sessions in the previous time-frame. Finally,
the third method uses the forecasts from both slices to perform
proactive management of the congestion. When the number
of sessions forecasted in the next time-frame for each slice
is above the 80% threshold, the network prematurely adapts
its resources for each slice to accommodate the number of
sessions forecasted, to prevent the congestion in the network.
Figure [§] shows the proactive threshold adaptation.

The performance metric for the three methods is the percent-
age of sessions above the threshold, which is shown in Table
The reactive management of the congested threshold
reduces the number of congested sessions for both slices, and
the proactive management of the congested threshold reduces
it even more, as expected.

An interesting fact is the high number of congested sessions
in the entire network when compared with both slices, for the
two first methods. This is due to the aggregated traffic having
its mean value closer to the 80% threshold, with more sessions
being above the threshold than before, and with lower peaks
when compared with the mean value of the data. However, the

100
gof /| 7 1%
60 | \ \ ™M

[| | \ \ [h
40 J‘ | | | | ‘ /

| | N | | | / \
N N ¥ A N v)
. I\, I\ N
20/ I Il Il |l | I
Il Percentage of sessions in the network |
| Congestion threshold

! I

Percentage of sessions per hour
=

! |l
0 20 40 60 80 100 120 140 160
Timestamp

Fi

g. 8. Proactive management of the congestion threshold in the network.

TABLE VII
PERCENTAGE OF CONGESTED SESSIONS IN BOTH SLICES, ACCORDING TO
THE DIFFERENT METHODS OF CONGESTION MANAGEMENT USED.

Vehicular 4G Entire Network
Slice Slice (Aggregated)
No threshold adaptation 2.53% 1.28% 2.51%
Reactive management 2.00% 0.55% 0.83%
Proactive management 1.02% 0.32% 0.38%

proactive management of the network can adapt to it, because
the aggregated congestion management has less congested
sessions than the sum of the congested sessions in both slices.
Therefore, the results show that the proactive management
reduces even further the congestion in the network, through the
utilization of accurate predictions in the network. Other than
congestion reducing, the proactive management also reduces
the resources needed for each slice, by accurately predicting
what are the resources needed for all slices, allowing for a
better resource allocation.

VIII. CONCLUSION

With the implementation of 5G networks, automated deci-
sions and autonomous action on the network are essential for
the management of 5G networks. In this paper, we present
an overview of linear and non-linear forecasting methods, and
discuss their use to improve management in 5G networks. By
using our proposed forecasting framework, we evaluated an
extended set of forecasting approaches, including ensembles of
the best ones, and tested the use of statistical features extracted
from the time-series to forecast the number of users’ sessions
in different networks.

Through these forecasting models, a multi-slice resource
management approach has been proposed, to ensure that the
resources needed for each slice are divided fairly according to
the forecasts of all slices. Moreover, the goal was to optimize
the usage of a resource for slices: each slice should have
enough resources to provide to its users the minimum conges-
tion possible, while saving the maximum of resources for other
slices or for network emergencies. The proposed proactive
congestion management is able to forecast the congestion
and act accordingly in the network to increase the network
resources for a slice. This approach has finally been integrated
in a 5G architecture.

Future work aims to test more use cases with the prediction
framework in the 5G architecture, mainly forecasting network
problems and anomalies.

ACKNOWLEDGMENT

This work is supported by the European Regional Devel-
opment Fund (FEDER), through the Regional Operational
Programme of Lisbon (POR LISBOA 2020) and the Com-
petitiveness and Internationalization Operational Programme
(COMPETE 2020) of the Portugal 2020 framework [Project
5G with Nr. 024539 (POCI-01-0247-FEDER-024539)].

[1]

[2]

[3]

[4]

[5]

[6

=

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

REFERENCES

M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5g: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221,
June 2017.

A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5g
network slicing using sdn and nfv: A survey of taxonomy, architectures
and future challenges,” Computer Networks, vol. 167, p. 106984,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128619304773

D. Ferreira, C. Senna, P. Salvador, L. Cortesdo, C. Pires, R. Pedro,
and S. Sargento, “Root cause analysis of reduced accessibility in
4g networks,” in Machine Learning for Networking, S. Boumerdassi,
E. Renault, and P. Miihlethaler, Eds. Cham: Springer International
Publishing, 2020, pp. 117-133. [Online]. Available: https://link.springer.
com/chapter/10.1007%2F978-3-030-45778-5_9

D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs, and
X. Costa-Perez, “Network slicing meets artificial intelligence: An ai-
based framework for slice management,” IEEE Communications Maga-
zine, vol. 58, no. 6, pp. 32-38, 2020.

F. Grando, L. Z. Granville, and L. C. Lamb, “Machine learning in
network centrality measures: Tutorial and outlook,” ACM Comput.
Surv., vol. 51, no. 5, pp. 102:1-102:32, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3237192

S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
M.-L. Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep
learning: Algorithms, techniques, and applications,” ACM Comput.
Surv., vol. 51, no. 5, pp. 92:1-92:36, Sep. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3234150

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey
of the recent architectures of deep convolutional neural networks,”
Artificial Intelligence Review, April 2020. [Online]. Available: https:
/Mink.springer.com/article/10.1007/s10462-020-09825-6

N. Huynh, D. Hoang, D. Nguyen, and E. Dutkiewicz, “Optimal and
fast real-time resource slicing with deep dueling neural networks,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1455—
1470, 2019.

J. Koo, V. Mendiratta, M. Rahman, and A. Walid, “Deep reinforcement
learning for network slicing with heterogeneous resource requirements
and time varying traffic dynamics,” in /5th International Conference on
Network and Service Management (CNSM 2019). 1EEE, 2019.

P. M. Santos et al., “PortoLivingLab: An IoT-based sensing platform for
smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 523-532,
apr 2018. [Online]. Available: https://doi.org/10.1109/ji0t.2018.2791522
X. Ding, S. Canu, T. Denoeux, T. Rue, and F. Pernant, “Neural network
based models for forecasting,” in in Proceedings of ADT’95. Wiley
and Sons, 1995, pp. 243-252.

A. Azzouni and G. Pujolle, “Neutm: A neural network-based framework
for traffic matrix prediction in SDN,” CoRR, vol. abs/1710.06799,
2017. [Online]. Available: http://arxiv.org/abs/1710.06799

M. Barabas, G. Boanea, A. B. Rus, V. Dobrota, and J. Domingo-
Pascual, “Evaluation of network traffic prediction based on neural
networks with multi-task learning and multiresolution decomposition,”
in 2011 IEEE 7th International Conference on Intelligent Computer
Communication and Processing. 1EEE, aug 2011. [Online]. Available:
https://doi.org/10.1109/iccp.2011.6047849

A. Haar, “Zur theorie der orthogonalen funktionensysteme,”
Mathematische Annalen, vol. 69, no. 3, pp. 331-371, Sep 1910.
[Online]. Available: https://doi.org/10.1007/BF01456326

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” GMD Report 148, 2001. [Online]. Available: http:
/Iwww.taculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf]
Z. Chen, J. Wen, and Y. Geng, “Predicting future traffic using hidden
markov models,” in 2016 IEEE 24th International Conference on
Network Protocols (ICNP). 1EEE, nov 2016. [Online]. Available:
https://doi.org/10.1109/icnp.2016.7785328

H. Singh, “Performance analysis of unsupervised machine learning
techniques for network traffic classification,” in 2015 Fifth International
Conference on Advanced Computing Communication Technologies, Feb
2015, pp. 401-404.

R. Madan and P. S. Mangipudi, “Predicting computer network
traffic: A time series forecasting approach using DWT, ARIMA and
RNN,” in 2018 Eleventh International Conference on Contemporary
Computing (IC3). 1EEE, Aug. 2018. [Online]. Available: https:
//doi.org/10.1109/ic3.2018.8530608

Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrows intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432-2455,
Fourthquarter 2017.

Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Traffic
prediction based on random connectivity in deep learning with long
short-term memory,” CoRR, vol. abs/1711.02833, 2017. [Online].
Available: http://arxiv.org/abs/1711.02833

A. Martin, J. Egaia, J. Flérez, J. Montalban, I. G. Olaizola, M. Quartulli,
R. Viola, and M. Zorrilla, “Network resource allocation system for qoe-
aware delivery of media services in 5g networks,” IEEE Transactions
on Broadcasting, vol. 64, no. 2, pp. 561-574, 2018.

P. Casas, “Machine learning models for wireless network monitoring
and analysis,” in 2018 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), April 2018, pp. 242-247.

W. Guan, X. Wen, L. Wang, and Z. Lu, “Network slicing management
of 5g ultra-dense networks based on complex network theory,” in /IEEE
Globecom Workshops. 1EEE, 2017.

T. Li, X. Zhu, and X. Liu, “An end-to-end network slicing algorithm
based on deep g-learning for 5g network,” IEEE Access, vol. 8, no. 1,
pp. 122229-122 240, 2020.

H. Chergui and C. Verikoukis, “Offline sla-constrained deep learning for
5g networks reliable and dynamic end-to-end slicing,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 2, pp. 350-360, 2020.
F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allocation
for network slicing,” IEEE/ACM Transactions on Networking, vol. 28,
no. 3, pp. 1311-1324, 2020.

F. Song, J. Li, C. Ma, Y. Zhang, L. Shi, and D. N. K. Jayakody, “Dy-
namic virtual resource allocation for 5g and beyond network slicing,”
IEEE Open Journal of Vehicular Technology, vol. 1, pp. 215-226, 2020.
T. D. Buskirk, A. Kirchner, A. Eck, and C. S. Signorino., “An
introduction to machine learning methods for survey researchers,” Survey
Practice, vol. 11, 2018. [Online]. Available: https://doi.org/10.29115/SP-
2018-0004

G. E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.
[Online]. Available: http://arxiv.org/abs/1207.0580

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.
03167

H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94-101, June
2018.

K. Pearson, “VII. note on regression and inheritance in the case
of two parents,” Proceedings of the Royal Society of London,
vol. 58, no. 347-352, pp. 240-242, Jan. 1895. [Online]. Available:
https://do1.org/10.1098/rspl.1895.004 1

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

D. Ferreira, C. Senna, and S. Sargento, “Distributed real-time forecasting
framework for iot network and service management,” in Fifth IEEE/IFIP
International Workshop on Analytics for Network and Service Manage-
ment (AnNet 2020), IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2020.

ETSI, “3gpp ts 123 501 v15.9.0 (2020-03) — 5g; system architecture for
the 5g system (5gs) (3gpp ts 23.501 version 15.9.0 release 15),” Tech.
Rep., 2020.

http://www.sciencedirect.com/science/article/pii/S1389128619304773
http://www.sciencedirect.com/science/article/pii/S1389128619304773
https://link.springer.com/chapter/10.1007%2F978-3-030-45778-5_9
https://link.springer.com/chapter/10.1007%2F978-3-030-45778-5_9
http://doi.acm.org/10.1145/3237192
http://doi.acm.org/10.1145/3234150
https://link.springer.com/article/10.1007/s10462-020-09825-6
https://link.springer.com/article/10.1007/s10462-020-09825-6
https://doi.org/10.1109/jiot.2018.2791522
http://arxiv.org/abs/1710.06799
https://doi.org/10.1109/iccp.2011.6047849
https://doi.org/10.1007/BF01456326
http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf
http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf
https://doi.org/10.1109/icnp.2016.7785328
https://doi.org/10.1109/ic3.2018.8530608
https://doi.org/10.1109/ic3.2018.8530608
http://arxiv.org/abs/1711.02833
https://doi.org/10.29115/SP-2018-0004
https://doi.org/10.29115/SP-2018-0004
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1098/rspl.1895.0041

Diogo Ferreira is currently working as Data Sci-
entist at Talkdesk. He received the M.Sc. in Com-
puters and Telematics Engineering from University
of Aveiro, Portugal (2019). Over the last few years,
he was involved with research in the area of 5G
networks and Machine Learning. His main interests
are intelligent networks, machine learning and deep
learning.

Andre Braga Reis received the B.S. and M.Sc.
degrees in electronics and telecommunications engi-
neering from the University of Aveiro, Portugal, in
2009, in collaboration with the Eindhoven Univer-
sity of Technology, The Netherlands, and the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, Pittsburgh, PA, USA.
His research interests are in vehicular, ad-hoc, and
mesh networks.

Dr. Carlos Senna is a Post-Doctoral Researcher
at Instituto de Telecomunicag€s (IT) in Aveiro,
Portugal. He received the Ph.D. (2014) degrees in
Computer Science from the University of Campinas,
Brazil, and he is working in research related to
computer networks, cloud/edge computing and dis-
tributed systems. Over the last years he was involved
in several research projects (Horizon Project: A New
Horizon to The Internet, Support for Orchestration of
Resilient and Reliable Services In the Fog (SORTS),
and Europe - Brazil Collaboration of Big Data
Scientific Research Through Cloud-Centric Applications (EUBRA BIGSEA)).
Currently, he is involved in projects such as S2MovingCity: Sensing and
Serving a Moving City, P2020 SAICT- PAC/0011/2015 MobiWise: from
Mobile Sensing to Mobility Advising, 5G Mobilizer project “Components
and services for 5G networks, and Efficient Information Centric Networks for
IoT Infrastructure (InfoCent-IoT)”. His main research interests are in ad-hoc
and vehicular network mechanisms and protocols, network management, and
cloud/edge/fog based solutions.

Susana Sargento is a Full Professor in the Uni-
versity of Aveiro and a senior researcher in the
Institute of Telecommunications, where she is lead-
ing the Network Architectures and Protocols (NAP)
group (https://www.it.pt/Groups/Index/62). She re-
ceived her PhD in 2003 in Electrical Engineering
in the University of Aveiro, being a visiting student
at Rice University in 2000 and 2001. She joined the
Department of Computer Science of the University
of Porto between 2002 and 2004, and she was a
Guest Faculty of the Department of Electrical and
Computer Engineering from Carnegie Mellon University, USA, in August
2008, where she performed Faculty Exchange in 2010/2011. Since 2002
she has been leading many national and international projects, and worked
closely with telecom operators and OEMs. She has been involved in several
FP7 projects (4WARD, Euro-NF, C-Cast, WIP, Daidalos, C-Mobile), EU
Coordinated Support Action 2012-316296 "FUTURE-CITIES”, EU Horizon
2020 5GinFire, national projects, and CMU-Portugal projects (S2MovingCity,
DRIVE-IN with the Carnegie Melon University) and MIT-Portugal Snob5G
project. She has been TPC-Chair and organized several international confer-
ences and workshops, such as ACM MobiCom, IEEE Globecom and IEEE
ICC. She has also been a reviewer of numerous international conferences
and journals, such as IEEE Wireless Communications, IEEE Networks, IEEE
Communications. She was the founder of Veniam (www.veniam.com), which
builds a seamless low-cost vehicle-based internet infrastructure, and she was
the winner of the 2016 EU Prize for Women Innovators. Susana is also the
co-coordinator of the national initiative of digital competences in the research
axis (INCoDe.2030, http://www.incode2030.gov.pt/), belongs to the evaluation
committee of the Fundo200M (www.200m.pt) government co-investment
and funding), and she is one of the Scientific Directors of CMU-Portugal
Programme (http://www.cmuportugal.org/). Her main research interests are
in the areas of self-organized networks, in ad-hoc and vehicular network
mechanisms and protocols, such as routing, mobility, security and delay-
tolerant mechanisms, resource management, and content distribution networks.
She regularly acts as an Expert for European Research Programmes.

	Introduction
	Related Work
	Forecasting Methods
	Classical Machine Learning Methods using Time-lagged Inputs
	Neural Networks
	1-D Convolutional Neural Networks
	Feature-based Methods
	Summary

	Evaluation of forecasting methods applied in network scenarios
	Vehicular Network Dataset Analysis
	4G network dataset analysis
	Results with ARIMA and CML Methods
	Results with Neural Networks
	Other approaches with ensemble models

	Predictor Framework
	Distributed Intelligence in 5G environments
	Using the predictions to improve a 5G Network
	Dividing a Resource for Multiple Slices
	Preventing Network Congestion

	Conclusion
	References
	Biographies
	Diogo Ferreira
	Andre Braga Reis
	Dr. Carlos Senna
	Susana Sargento

