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Abstract
The increased programmability of communication networks makes them more autonomous, and with the ability to actuate
fast in response to users and networks’ events. However, it is usually a difficult task to understand the root cause of the
network problems, so that autonomous actuation can be provided in advance. This paper analyzes the probable root causes of
reduced accessibility in 4G networks, taking into account the information of important key performance indicators (KPIs),
and considering their evolution in previous time-frames. This approach resorts to interpretable machine learning models
to measure the importance of each KPI in the decrease of the network accessibility in a posterior time-frame. The results
show that the main root causes of reduced accessibility in the network are related with the number of failure handovers,
the number of phone calls and text messages in the network, the overall download volume, and the availability of the cells.
However, the main causes of reduced accessibility in each cell are more related to the number of users in each cell and its
download volume produced. The results also show the number of principal component analysis (PCA) components required
for a good prediction, as well as the best machine learning approach for this specific use case. In addition, we finished our
considerations with a discussion about 5G network requirements where proactivity is mandatory.
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1 Introduction

In communication networks, root cause analysis of network
problems or failures is essential, so that a fast reaction to
these failures or even an anticipation and prevention of these
failures can take place. However, usually, it is difficult to
assess the cause of reduced network accessibility, since it
may happen due to a large number of issues, and impacting
in a large number of metrics simultaneously. Knowing the
causes that lead to these events can help to detect them
prematurely and it indicates how to act autonomously on the
network to mitigate or avoid them.

With the increased requirements proposed for the 5G
networks, e.g. 1,000,000 devices per km2, 20 Gbit/s
of download peak data rate [5], the new generation of
cellular networks promises to handle more traffic than
ever before. The incorporation of network slicing, as
well as software-defined networking (SDN) and network
function virtualizations (NFVs) in the 5G architecture,
overly increases the management complexity of those
networks. With so many metrics to monitor, it is becoming
harder to detect the cause of an event due to the complex
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combinations of various key performance indicators (KPIs).
Traditional approaches to detect the root cause of failures,
with a knowledge base and a set of rules, is becoming
obsolete due to the flexibility of the network. With the
advances in machine learning, it is easier to indirectly
analyze dependent variables with reduced complexity, but
with increased uncertainty.

This work identifies the KPIs that may cause reduced
accessibility in 4G networks, using machine learning tech-
niques. Knowing those KPIs helps to create a proactive
management of the network, detecting an eventual future
drop in network accessibility and having the possibility to
avoid it by acting on the network, adjusting the resources
that have the most impact on those KPIs. However, the
aim of this work is not to propose a resource manage-
ment approach, but to identify the problems in the network,
the causes of those problems, and give this information
to the network operator, so that it can adjust its resources
along time, when it is predicted that the accessibility will
be reduced. Therefore, we will use statistical analysis and
machine learning for this identification and prediction in
advance.

In this work, two different approaches for root cause
analysis are explained and discussed. The first approach
measures the feature importance using internal calculations
in the model to determine the importance of each KPI in
a reduced accessibility event. However, due to the high
number of combinations of the KPIs, it is not feasible to
test all possibilities. It is then important to perform feature
selection. The second approach proposes a dimensionality
reduction algorithm to reduce the number of features and
apply the machine learning algorithms.

A stepping approach of our solution is depicted in Fig. 1,
which shows the different phases of the work and the rela-
tionship between them. Initially, it is chosen the low accessi-
bility metric, the performance metrics, the feature importance

methodology and the features of the models. For each
scenario defined, models are trained with machine learning
algorithms. The feature importance of the best model
is measured to determine which are the most important
features to predict the low accessibility in a 4G network.

In the evaluation results, we present the most important
KPIs that are able to predict if the number of E-UTRAN
radio access bearer (E-RAB) setup failures is above a speci-
fic threshold. Then, we present the most important KPIs that
are able to predict if the number of E-RAB establishment
failures has high variations, and therefore, are highly
correlated to the reduction of the network accessibility.

The results showed that the causes of reduced accessi-
bility of the overall network are the number of failure han-
dovers, the number of phone calls and SMSs in the network,
and the overall download volume; the causes of reduced
accessibility of each cell are related with the number of
users in a cell and its download volume. This is extremely
important to proactively change the network configurations
and avoid the reduction on the network accessibility.

Previous work on this subject was published in [6], where
a preliminary study of the root cause analysis has been
performed. This article extends this previous one and has
the following contributions:

– Analyses the problem of low accessibility in 4G
networks;

– Through different approaches, it analyses the important
features on the reduced accessibility of the network;

– Applies and extends machine learning algorithms to
determine the KPIs that most impact the low network
accessibility;

– Determines the difference between overall network and
per cell performance in terms of impacting KPIs;

In the remaining of the paper, Section 2 shows related
work, Section 3 discusses how KPIs impact the network

Fig. 1 Workflow to determine
the root causes of reduced
accessibility in the network
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accessibility, Section 4 presents our approaches for root
cause analysis, Section 5 discusses the results, Section 6
present an architecture to act proactively in 5G networks,
and Section 7 presents conclusion and future works.

2 Related work

Understanding the root cause of an observed symptom
in a complex system has been a major problem for
decades. The main question is how to find appropriate
real-time mechanisms to determine root causes [18]. Most
root cause analysis approaches for network operators are
currently based on Bayesian Networks [14]. They have
the capability of representing network metrics and events
in nodes, and their relations represent the dependencies,
along with a conditional probability. To obtain the most
probable cause of an error, a probabilistic inference can
be done. In [1], the author proposed a repair system for
analyzing four main network problems: IP duplication, link
up/down, loopback, and MAC flapping problems. He made
the problem classification using rule-based with thresholds.
However, the proposed solution does not use machine
learning or other intelligent method, making the solution
static and with no capability to evolve or understand
changes in the network behavior. In [2][3], the authors
argue that a Bayesian network is not suitable for large-scale
systems with a large number of components, because the
complexity of inference increases exponentially with the
number of nodes and dependencies between them. To solve
that, they combine the Bayesian network with case-based
reasoning techniques to prune the nodes needed to analyze
in the network. The results show that the technique used
reduces drastically the inference time, as well as the need
for human intervention.

In [19], a generic framework for root cause analysis in
large IP networks was proposed. To determine the root cause
of events, two reasoning engines are included: Bayesian
inference and rule-based reasoning. The authors discuss
that rule-based logic is often preferred over Bayesian
inference, because it is easier to configure, it has an
easier interpretation of results and it is effective in most
applications. However, Bayesian networks are preferred
when the root cause is unobservable (no direct evidence
can be collected). In our work, the root cause of reduced
accessibility is mostly unobservable. In [13], Maccari
and Passerini explain how they can perform monitoring,
anomaly detection and root cause analysis in mesh networks
using Big Data techniques. They describe the architecture of
mesh network, they justify the use of Big Data techniques
and provide a design for the storage and analysis of Big
Data produced by a large-scale mesh network. But, despite
introducing the detection of anomalies and root cause

analysis, and presenting a framework to deal with them, the
discussion is superficial and no results are presented on the
use of machine learning methods or algorithms.

The proposed solution in [4] determines which are
the parameters that are most relevant across all different
types of failure modes, and use them to build a Bayesian
network to model the cause-effect relationship between the
degradation parameters (cause) and failure modes (effect)
that occur on the field. Two real-life field issues are used as
examples to demonstrate the accuracy of the network once
it is modelled and built. This paper shows that accurately
modelling the hardware system as a Bayesian network
substantially accelerates the process of root cause analysis.

A self-healing method based on network data analysis
is proposed to diagnose problems in future 5G radio
access networks [9, 15]. The proposed system analyzes the
temporal evolution of a plurality of metrics, and searches for
potential interdependence under the presence of faults. The
work in [10] is the only one that we are aware of that uses
the concept of “variable importance” (“feature importance”
in our work) to measure how much a feature contributes
to predicting an objective variable on a machine learning
model. The influence of each variable is then represented in
an influence matrix that represents the influence that each
variable has for each event. However, only the Random
Forest algorithm is used to create a model. The variable
importance is then calculated using the permutation feature
importance approach.

Our work studies RAC through different approaches. It
analyses the important features on the reduced accessibility
of the network. The diversity of algorithms used in the
works shown above is restricted, with few of them using
Logistic Regression1 or Random Forest.2 We extended our
preliminary study applying a wide range of algorithms
(Logistic Regression, Extra Trees, Random Forest, Gradient
Boosting,3 and AdaBoost4) to determine the KPIs that
most impact the low network accessibility. Moreover, we
discuss the difference between overall network and per cell
performance, in terms of impacting KPIs.

3 Problem statement

The objective of this work is to understand what are the
most important KPIs to anticipate reduced accessibility in a
4G network. A 4G network is chosen, since it is a running
network with real data. The data available on 5G networks

1https://www.statisticssolutions.com/what-is-logistic-regression/
2https://towardsdatascience.com/an-intuitive-explanation-of-random-
forest-and-extra-trees-classifiers-8507ac21d54b
3https://towardsdatascience.com/understanding-gradient-boosting-
machines-9be756fe76ab
4https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe
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Fig. 2 Sequence diagram indicating the E-RAB setup phase—success

is still scarce and can lead to distorted conclusions. There
are still few 5G devices available and, in general, they are
still in the testing phase. Even so, at Section 6, we discuss
RCA within the 5G context.

In this work, a 31-day data set with 4G network KPIs
from an overall country was used. The interval period
between each measurement of a KPI is 1 h, which means
that there are 24 values for each KPI (total of 744
measurements) for each cell every day. A metric must be
chosen to represent the reduced accessibility. After that,
with time-series analysis, it is possible to calculate the
importance of each KPI to the reduced accessibility metric.

The metric used to indicate low accessibility in the
network is the number of E-UTRAN radio access bearer
(E-RAB) setup failures per hour in the network. The E-
RAB setup in a 4G network is a major KPI for accessibility.
The E-RAB is a bearer that the user agents (UEs) need to
establish communications in the network [11, 17]. Figure 2,
inspired by the OTP blog5, shows the E-RAB setup phase.
After the UE has established a connection with the E-
UTRAN Node B (eNB), it is needed to setup a context with
the mobility management entity (MME), to enable the UE
to communicate and send data to the network.

When the MME sends a context setup request, it is
called an E-RAB setup attempt. After some configuration
messages between the UE and the eNB, the context setup
response from the eNB to the MME is called an E-RAB
setup success. There are more E-RAB setup attempts than

5https://ourtechplanet.com/lte-erab-success-rate/

E-RAB setup successes. When the network is congested,
the difference between the E-RAB setup attempts and the
E-RAB setup successes is higher, because some messages
after the E-RAB setup attempt are lost due to network
problems, such as congestion.

A new accessibility metric is used to measure the
accessibility of the network: the number of E-RAB setup
failures. If the number of E-RAB setup failures has a high
value, the network is congested. The sequence diagram
indicating E-RAB setup failure is shown in Fig. 3, and the E-
RAB setup failure formula is presented in Eq. 1, where esf

is the number of E-RAB setup failures, esa is the number
of E-RAB setup attempts, and ess is the number of E-RAB
setup successes.

esf (t) = esa(t) − ess(t) (1)

The E-RAB setup failure is depicted in Fig. 4a. The
biggest congestion happened on the 17th day. The objective
of this paper is now to understand which KPIs most
contribute to the forecast of this metric. To do this, it is
important to analyze the KPIs individually and also their
aggregation. Figure 4b shows that there were failures related
to Handover (intrafrequence and interfrequence) at exactly
the same period as the E-RAB failures. However, Fig. 4c
shows that in the same period, no abnormal behavior related
to Circuit Switched Fallback (CSFB) was identified. But
both of them are considered important KPIs related to
E-RAB as we will demonstrate in Section 5.1.

Other metrics could also be used to measure accessibility
problems, such as the Radio Resource Control (RRC) setup

Fig. 3 Sequence diagram indicating the E-RAB setup phase—fail

https://ourtechplanet.com/lte-erab-success-rate/
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(a)

(b) (c)

Fig. 4 Important KPIs related with E-RAB

failure. As it will be shown in Section 5, this KPI is highly
correlated with the ERAB setup failures of an individual
cell, as it is involved in the first phase of an E-RAB setup
(Fig. 3). Other metrics also commonly used to measure
the network accessibility are the contention-based (CB)
random-access channel (RACH) procedure failure and the
S1 establishment failure [20]. However, both metrics were
not present in the available dataset.

4Methodology for root cause detection

In this section, we describe two different approaches for root
cause analysis using machine learning techniques. One
approach that measures feature importance using internal
calculations in the model is used to determine the importance
of each KPI in a reduced accessibility event. Our second
approach proposes a dimensionality reduction algorithm to
decrease the number of features (feature selection).

4.1 Approaches tomeasure the feature importance

A simple test to check if any KPI can accurately forecast
the number of E-RAB setup failures is to calculate the
Pearson correlation coefficient6 between the number of E-
RAB setup failures and all other KPIs. Since the goal is
to understand which KPIs can forecast low accessibility
before the number of E-RAB setup failures increases, the

6https://www.statisticssolutions.com/pearsons-correlation-coefficient/

KPI values will be shifted (lagged) behind the number of
E-RAB setup failures by one hour (the values are sampled
hourly; one hour is the minimum time interval).

There are two disadvantages of analyzing the KPIs’ impor-
tance with the Pearson correlation coefficient. For each KPI,
it is only measured its linear contribution to the number of
E-RAB setup failures. Besides, combinations of KPIs that
can be important are not being taken into account, because
it is assumed that the KPIs are independent of each other.

There are other approaches to measure the importance
of input features to an output value that takes into account
these considerations. These approaches take advantage of
machine learning techniques, and they can be divided into
two categories: some approaches take into account the error
of the model in a test set to calculate the importance of
the input features; other approaches measure the feature
importance with an internal calculation (algorithm-specific)
of the coefficients associated with each input feature.

Approaches considering the model error One of the
approaches that fall into the first category is the drop col-
umn feature importance. In this approach, the importance of
a feature is measured by comparing the test error of a model
when all features are available as input, with the test error
of a model when one feature is dropped for training. The
higher the error for the model with one feature dropped, the
more importance is given to that feature.

A big disadvantage of this approach is that, for each
feature, it is needed to train a new model with that feature

https://www.statisticssolutions.com/pearsons-correlation-coefficient/
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dropped, which causes the approach to be inefficient for
many features, or for models that take a significant training
time. In the permutation feature importance approach [8],
a similar approach is used without the need to re-train the
model for each feature. Instead of dropping the feature, it
is applied random shuffling to the test values of that feature
among the various examples, to preserve the distribution of
that variable. If the model error is almost unchanged, the
feature is not much important for the forecast. However, if
the model error increases much, it is a sign that the feature
is important for the forecast.

Both previous approaches have some advantages. It is
possible to apply them to black-box models, given that the
feature importance is measured by the model error. They also
take into account all interactions between features, which is
an advantage when compared with the correlation tests. In
the permutation feature importance approach, a disadvan-
tage is that the results are dependent on the shuffling of the
features. If the tests are repeated, the results may vary.

Approaches considering feature importance using internal
calculations The approaches that measure the feature
importance by inspecting the internals of the models are
algorithm-dependent. For some algorithms, like neural
networks or support vector machines (SVMs), it is
impossible to calculate the importance of each feature,
due to the non-linear transformations applied. However,
for other algorithms such as Logistic Regression, Extra
Trees, Random Forest, Gradient Boosting, or AdaBoost, it
is possible to estimate the importance of each feature. For
linear regression, the importance of each feature can be
measured by the absolute value of the coefficient associated
with each input (if all features are within the same scale).
For the other four tree-based ensemble algorithms (Extra
Trees, Random Forest, Gradient Boosting, and AdaBoost),
the feature importance can be calculated with resort to
the mean decrease impurity (or Gini impurity7). The
importance of a node j in a decision tree is computed as
described in Eq. 2, where wj is the weighted number of
samples in node j , Cj is the impurity of this node, and
lef t (j) and right (j) are the respective children nodes.

nij = wjCj − wlef t (j)Clef t (j) − wright (j)Cright (j) (2)

The feature importance of feature i across all nodes is
computed as described in Eq. 3,8 where a node splitting in
feature i means that the node uses the value of the feature i

to divide its children nodes.

Fii =
∑

j :node j splits on feature i nij
∑

j∈all nodes nij
(3)

7https://victorzhou.com/blog/gini-impurity/
8https://stats.stackexchange.com/questions/311488/
summing-feature-importance-in-scikit-learn-for-a-set-of-features/

For this approach, it is important that the features are all
normalized within the same scale, and it is recommendable
that they are from the same type (continuous/categorical) for
better importance estimation.

The advantage of the approaches that measure the feature
importance by inspecting the internals of the models is that
they do not depend on the test set, only on the model. If the
model is accurate and it is not underfitting or overfitting, the
feature importance can be calculated more reliably than the
previous methods. Otherwise, the feature importance will
be highly biased. The biggest challenge is to create accurate
models that do not overfit the train set. This second category
of approaches (measure feature importance with an internal
calculation algorithm-specific) will be used to measure the
importance of the KPIs.

4.2 Feature selection

If all KPIs are included as features, the performance of
the model will be degraded, because some features are
uncorrelated with the output and do not contribute to the
output classification. It is then important to perform feature
selection [12]. The ideal scenario is to test all combinations
of features in the input, and determine the best features
by the test error. However, it is not feasible to test all
combinations, due to their high number.

The approach chosen is to use a dimensionality reduction
algorithm to reduce the number of features. Principal
component analysis (PCA) [16] will be used as the
algorithm to perform dimensionality reduction. The five
algorithms chosen to train the model and to calculate the
feature importance are the following: Logistic Regression,
Extra Trees, Random Forest, Gradient Boosting, and
AdaBoost. Those algorithms were chosen because it is
possible to measure the importance of each input feature for
each prediction. For some algorithms, like neural networks
or SVMs, it is impossible to calculate the importance of
each feature, due to the non-linear transformations applied.

The feature importance of each model will calculate
the importance of each PCA component. Each component
importance is then multiplied by the PCA coefficients, to
get the KPI importance for each component. Finally, all
the importances of the same KPI are added, as described
in Eq. 4, where f ij is the feature importance of the j

PCA component and pca coeff icient (j, i) is the PCA
coefficient i for the component j , where i is the number of
a KPI and j is a PCA component.

kpi ii =
n pca components∑

j=0

f ij ∗ pca coeff icient (j, i) (4)

To get the best possible model, the number of PCA
components cannot be too small, because relevant features

https://victorzhou.com/blog/gini-impurity/
https://stats.stackexchange.com/questions/311488/summing-feature-importance-in-scikit-learn-for-a-set-of-features/
https://stats.stackexchange.com/questions/311488/summing-feature-importance-in-scikit-learn-for-a-set-of-features/
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can be lost; however, the number cannot be too big either,
with the risk of creating overfitted models. The number of
PCA components tested will vary from 1 to the number of
KPIs, for the five algorithms. The model with a lower test
error will be used to calculate the KPI importance.

4.3 Defining the input and the output
of the algorithms

The input values will be based on the KPIs. There will be
two types of input values: normalized values and normalized
variations. For each KPI, the normalized value of the pre-
vious hour will be used as input. The number of lags could
be increased besides one hour, but in this test it is considered
that the low accessibility indicators appear at most one
hour before the congestion. For each KPI, the normalized
variation will be calculated according to the Eq. 5. The
normalized variations are added as features because the
network accessibility can depend, not only on the previous
values but also on sudden variations of other KPIs.

normalized variation(t)= value(t−1)−value(t−2)

value(t−2)
(5)

Two types of classification problems will be used to
calculate the importance of the KPIs. It is important to
understand which KPIs are more important when forecast-
ing the possibility of a low accessibility event in a network.
It is also important to understand which KPIs are more
important to forecast sudden increases and decreases in the
network accessibility. For each case, a different output value
will be calculated. For the first case, it will be set a threshold
in the 90th percentile of the data, with all the values above
the threshold being classified as one, and all other values as
zero, turning the problem into a binary classification prob-
lem. For the second case, the output will be classified as one
if the absolute difference between two consecutive values is
higher than the 90th percentile of the data, and zero other-
wise. Doing that, it is possible to analyze which KPIs are
most important for classifying low accessibility events, and
also for forecasting bigger increases and decreases in data,
which can be important for resource allocation.

The two classification problems will be applied in two
different ways, according to the data split. First, the tests
will be done with aggregated data. The network KPIs will be
added and will be taken into account in the whole network.
In this way, it is possible to forecast low accessibility of
the network. Another way of performing the tests is to split
the data per cell. In this approach, the data will not be
aggregated, and 75% of all cells in the network will be
used to train, with the other 25% cells used as test set. The
threshold for the tasks will be defined using the specific
values of each cell (each cell will have a different threshold,
based on its values). With this approach, it is built a model

that is capable of detecting low accessibility per cell. This
case is expected to perform worse than the aggregated
network, because forecasting low accessibility per cell is
harder than forecasting low accessibility in the network.
However, for a network operator, it is very important to
forecast low accessibility per cell for various reasons. For
a cell in a crowded region, it can be made management
adjustments to avoid the low accessibility of the cell, such as
the installation of another temporary cell, or the allocation
of resources for that cell. Besides, it can be made a time-
series analysis about the future accessibility of the cells in a
region, for expansion purposes.

4.4 Performancemetric

For both classification problems, a performance metric
must be used. Since in the problems previously described
the number of positive samples is lower than the number
of negative samples, the performance metric on accuracy
would give similar cost to the false negative and false
positive errors. The performance metric used will be the F1-
score (6). The F1-score is the harmonic mean of precision
(7) and recall (8), and it encompasses the False Negative
and False Positive errors, weighted according to the number
of samples of each class. The precision and recall were also
calculated. They are not included in the article because they
provide similar information and conclusions to F1 − score.

F1 = 2 ∗ precision ∗ recall

precision + recall
(6)

precision = true positives

true positives/f alse positives
(7)

recall = true positives

true positives/f alse negatives
(8)

5 Root cause detection results

Traffic monitoring is essential to provide a good quality to
the services in communication networks. Network condi-
tions such as bandwidth, packet loss, delay and jitter are
important for traffic engineering to track the quality needs of
applications. Therefore, it is important not only to measure
the network conditions, but also to analyze them to unders-
tand the causes of reduced accessibility in cellular networks.
In the following, we show how machine learning techniques
can help to understand which network KPIs can indicate a
low accessibility event that will happen in the future.

5.1 Aggregated network tests

In this Section, the results for the aggregated network
tests will be presented. As explained before, two scenarios
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are proposed. First, it will be presented (scenario i) the
most important KPIs for predicting if the number of E-
RAB setup failures is above a threshold. Second, it will
be presented (scenario ii) the most important KPIs for
predicting if the number of E-RAB establishment failures
has high variations.

In Fig. 5 it is shown that the best model for scenario (i) is
the Extra Trees algorithm, achieving an F1-score of 86.6%,
with 23 PCA components. With a higher number of PCA
components, the performance of most of the algorithms
starts to deteriorate.

Table 1a shows the ten KPIs that are considered more
important for predicting if the number of E-RAB setup fail-
ures is above a threshold. The handover failure is considered
to be the most important KPI, both inter- and intrafre-
quency. The third KPI is the Circuit Switched FallBack
(CSFB) preparation success. The CSFB is a technology
to create circuit-switched calls over a 4G network that
does not support LTE voice call standard (VoLTE), which
has to fall back on the 3G network. This indicates that
the number of phone calls and SMS messages has a high
impact on the network accessibility. The Packet Data Con-
vergence Protocol (PDCP) download transmission time,
the variation of the inter-frequency handovers and the cell
available time are also important KPIs to predict varia-
tions in the number of E-RAB setup failures. Finally, the
ERAB normal release, handovers intrafrequency success
and attempt, and upload traffic volume have also a signifi-
cant importance.

The best model for scenario (ii) is achieved with the
AdaBoost algorithm, achieving an F1-score of 40.0%, with

Table 1 Ten important KPIs in the aggregated network

KPI Value

(a) Scenario (i)

HO interfreq failure 0.194

HO intrafreq failure 0.188

CSFB Prep Success 0.181

PDCP Download TX Time 0.169

Variation HO interfreq failure 0.150

Cell availability 0.131

ERAB Normal Release 0.124

HO intrafrequency success 0.121

HO intrafrequency attempt 0.121

PDCP Upload Volume (Mb) 0.115

(b) Scenario (ii)

CSFB Prep Success 0.188

HO intrafreq failure 0.170

PDCP Download TX Time 0.157

HO interfreq failure 0.148

Variation HO interfreq failure 0.141

Download AS (Max) 0.138

Active Subscribers (AS) (Max) 0.125

RRC Setup Failure 0.121

Cell availability 0.120

Upload AS (Max) 0.119

24 PCA components. The F1-score is lower than in scenario
(i) because the task of predicting variations is harder than
the one of predicting if the value is above a threshold.

Fig. 5 Different algorithms in the aggregated network (scenario i)
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The number of PCA components is almost the same as
in scenario (i); however, in Fig. 6, it can be seen that the
algorithms’ F1-score is very unstable, and that it is hard
to build a model to predict accurately the variations of the
number of E-RAB establishment failures in the aggregated
network.

Table 1b shows the ten KPIs that are considered more
important for predicting if the number of E-RAB establish-
ment failures has high variations (scenario ii). The handover
failures are still important, but they are not the most impor-
tant KPI. In this case, the CSFB preparation success is the
most important KPI to predict the variations in the num-
ber of E-RAB setup failures. Similar to the scenario (i),
PDCP download transmission time, the variation of the
inter-frequency handovers, the number of active subscribers,
download and upload ones, and the cell available time are
also important KPIs.

5.2 Individual cells tests

In this subsection, the results for the individual cells will be
presented. In this case, 75% of the cells in the network will
be used for training and the other 25% for testing. Just like
in the previous subsection, first it will be presented (scenario
i) the most important KPIs for predicting if the number of
E-RAB establishment failures is above a threshold, and then
it will be presented (scenario ii) the most important KPIs
for predicting if the number of E-RAB setup failures has
high variations.

The best model for scenario (i) achieved an F1-score of
30.79%, using the Gradient Boosting algorithm, with 66
PCA components. For the cell prediction, more information
is needed to obtain the best model when compared with
the previous subsection. Figure 7 shows the F1-score
varying with the number of components and the different
algorithms. In the PCA component 62, there is an increase
in the F1-score of all algorithms.

Table 2a shows the ten KPIs that are considered more
important for the scenario (i). Since they are directly
correlated with the network accessibility, two KPIs have
much more importance than all others:

– RRC setup success ratio ( RRC setup success
RRC setup attempt ) and

– E-RAB setup success ratio ( ERAB setup success
ERAB setup attempt )

The best model for scenario (ii) has an F1-score of 20.39%,
using the AdaBoost algorithm with 68 PCA components.
The F1-score for different PCA components is similar to the
scenario (i), where the F1-score improved its performance
significantly after 60 PCA components (Fig. 8).

Table 2b shows the ten KPIs that are considered more
important for the scenario (ii). Like in the previous scenario,
RRC setup success ratio and E-RAB setup success rate are
the most important KPIs for the output. In this scenario,
other KPIs have also similar importance, such as the
variation of the cell availability, the average connected
subscribers, and the average number of radio bearers. A
radio bearer is a connection between the eNB and the UE at

Fig. 6 Different algorithms in the aggregated network (scenario ii)
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Fig. 7 Different algorithms in individual cells tests (scenario i)

layer 2, and defines the communication configurations for
upper layers.

5.3 Discussion

Aggregated network tests From the results of both aggre-
gated network tests, it can be concluded that most KPIs that
cause the number of E-RAB setup failures in a network to
be above a threshold are the same that cause it to have high
variations. Those KPIs are the number of failed handovers
(intrafrequency and interfrequency), the CSFB preparation
success (number of phone calls and SMSs in the network),
the PDCP download volume, and the cell availability. The
maximum number of active subscribers (downloading sub-
scribers and overall subscribers) also causes the number of
E-RAB setup failures to vary.

Interpreting the KPIs, the results achieved are according
to the intuition about lower network accessibility. When
the number of failure handovers is high, the cells are
crowded with user sessions and cannot accept any more
sessions, which leads to lower network accessibility in the
next hour. The high number of CSFB preparation success
shows that there is a clear relationship between the high
number of phone calls and SMS messages in the network
with its lower accessibility. The KPIs of PDCP download
volume and the maximum number of active subscribers
also show that the number of active subscribers and their
download volume influence the network accessibility (more
than the number of connected subscribers). Finally, the cell

availability indicates that, if many cells are unavailable in
the current hour, it is likely that the network accessibility
will be lower in the next hour.

Individual cells tests The results of the forecasts of low
network accessibility in individual cells had higher error
than the results with the aggregated network. In these tests,
the best models needed more data than the aggregated
network models to achieve the best result, because more
features were needed to be able to generalize the predictions
for different cells. The results show that, just like in the
aggregated network tests, the most important KPIs for
forecasting the number of E-RAB setup failures in a cell
to be above a threshold are the same that cause it to
have high variations. However, the most important KPIs
that cause lower accessibility in a network are different
from the KPIs that cause lower accessibility in a cell. The
two most important KPIs are the RRC and the E-RAB
setup success rate. These KPIs cannot be understood as the
cause for lower network accessibility, but as a consequence.
Because they are intrinsically related to the E-RAB setup
failure, being themselves accessibility metrics, they can
be understood as an indicator of the high autocorrelation
between consecutive hours. These results show that the
network accessibility per cell is highly dependent on the
network accessibility of that cell in the previous hour. If a
cell has lower network accessibility in an hour, it is likely
that the network accessibility in the next hour for that cell
is still low, and vice-versa. It is essential for a network
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Table 2 Ten important KPIs in individual cells tests

KPI Value

(a) Scenario (i)

RRC Setup Success Rate (SSR) 0.560

ERAB SSR 0.547

Connected Subscribers (CS) (Max) 0.069

Connected Subscribers (Avg) 0.066

Active CS (Avg) 0.043

Variation CS (Max) 0.034

Variation of Active CS (Max) 0.032

ERAB normal release 0.031

Variation Radio Bearers (Avg) 0.031

Variation CS (Avg) 0.031

(b) Scenario (ii)

ERAB SSR 0.147

RRC SSR 0.147

Variation Cell availability 0.138

CS (Avg) 0.102

Radio Bearers (RB) (Avg) 0.095

Variation RRC SSR 0.093

Variation ERAB SSR 0.092

ERAB Normal Release 0.088

CS (Max) 0.087

Variation RB (Avg) 0.081

operator to monitor the right KPIs for the different tasks:
forecast lower accessibility in a network or forecast lower
accessibility per cell.

As opposed to the results for the aggregated network, the
important KPIs for low network accessibility are not related
with the CSFB preparation success, or with any of the
handover metrics. The results by cell show that, besides the
RRC and the E-RAB setup success ratio, the most important
KPIs are counters related to the number of users in a cell and
its utilization: maximum number of connected subscribers,
average number of connected subscribers, average number
of active subscribers download data, variation of the
maximum number connected subscribers, variation of the
maximum number of active download subscribers, average
number of radio bearers or variation of the average number
of radio bearers. It is expected that, as these KPIs have
higher values, the accessibility of a cell decreases.

Because the available dataset provides KPIs only in 1-
hour intervals, it is not possible to predict low accessibility
with a smaller time interval. Time intervals of more than
one hour were tested (2, 4, 8, 16 and 24 hours), but the
F1 − score was lower than with the 1 hour prediction.

The time required to train the models lies between 0.1
and 1 second, using a personal laptop with 8 GB of RAM,
an Intel Core i7-6500U processor, and GeForce 940M as
a Graphics card, and implemented with the scikit-learn
library.

6 The proactive approach in 5G networks

The effort made in recent years by the research commu-
nity and the Telecom industry in defining a new network
architecture (5G) that supports the new set of requirements

Fig. 8 Different algorithms in individual cells tests (scenario ii)



Ann. Telecommun.

is finally reaching the market. The urge for efficient mon-
itoring of those networks is decisive for their successful
management. Due to its dynamic load and flexible topology,
forecasting of the network state is a must to ensure that the
user requirements are met. Automation of the network man-
agement is also mandatory, here made only possible thanks
to advances in virtualization, mainly in Software Defined
Networking (SDN) and Network Functions Virtualization
(NFV). In 5G environment, traditional routing protocols
cannot react in real-time to avoid congestion. That is, the
5G scale requires a proactive prediction-based approach, to
faster detect a possible congestion and to act accordingly in
the network to avoid it.

6.1 Prediction framework

To meet these automation requirements, we design and
implement a real-time distributed forecasting framework.
The proposed framework is able to test, in real-time and
simultaneously, different algorithms with different metrics,
including ensembles of the best algorithms [7]. With
the proposed framework, it is straightforward to create
ensemble predictions (predictions with the results of other
predictors), and include a message transformer, useful for
combining the result of different predictors, or for changing
the predictions. The modularity of the architecture is
adequate for enforcing data privacy policies. The predictor
components, where the data is stored, can be relocated to a
computational resource with reinforced security.

The high-level view of the prediction architecture,
depicted in Fig. 9, is composed of six main components: the
Prediction API, the Predictor Message Broker (PMB), the
Metric Prediction Component (MPC), the Metric Message
Transformation Component (MMTC), the Metric Prediction
Monitoring (MPM), and the Metric Prediction Orchestrator
(MPO). The Prediction API is the interface that allows a

client to: (i) predict a value for a time series system/metric,
(ii) train the predictor for a given metric, (iii) save new time
series data for later training, and (iv) change the training
parameters. The Prediction API is a REST microservice
that encapsulates in a simple and convenient way the
functionalities of the predictors without any operability loss,
to be used for non-experts. The Predictor API receives
the requests from external clients and, according to an
internal message protocol, sends a message to the Predictor
Message Broker (PMB). PMB forwards the message to
the corresponding MPC or MMTC, enabling the multicast
distribution of messages, allowing it to build several
prediction components for the same metric, each one with a
different prediction model.

The core component of the architecture is the MPC. Each
instance of the MPC is responsible for predicting the time
series data for a given dynamic system/metric. The MPC
does online or offline training of the model to update it
with the newly received data. For offline training, the train-
ing task parameters (date of the next training, training
data window, etc.) can be adjusted via the Prediction API.
For each new model uploaded, the MPC stores the data
to optimize the read and write operations for time-series
data, to be used when training the model. To enable an
ensemble prediction, it is also needed to perform a reduction
step, to join the predictor results and perform the adequate
transformation. The Metric Message Transformation Com-
ponent (MMTC) performs that transformation by receiving
the messages in the prediction message broker and applying
custom functions for each predictor component messages,
before inserting the transformed messages into the broker
time-series data, to be used when training the model.

The instances of the MPC and the MMTC are orches-
trated by the MPO. The MPO is able to manage the created
instances of metric predictors and transformations, ensuring
their availability and reliability, restarting them when they

Fig. 9 Macro architecture of the
prediction framework
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Fig. 10 Anomaly prediction
from two KPIs simultaneously

crash. When the instances of metric predictors and trans-
formations start their execution, they establish a connection
with the message broker (PMB), to be able to report their
activity to the monitoring component. The MPO works in
conjunction with Metric Prediction Monitoring (MPM). The
MPO can access the logs of the predictor and transformer
(the logs are sent to the message broker) and the exchanged
messages, to better understand the current state of operation
of the various components. The configuration and manage-
ment module is able to instantiate and manage the life cycle
of the predictor and the transformation components. These
components can be dynamically added or removed when
ordered by MPO.

6.2 The prediction framework in action

The 3rd Generation Partnership Project9 (3GPP) proposes
a 5G system architecture to leverage service-based inter-
actions between the network functions of the control
plane [21]. Some of the main components of this reference
5G architecture are the following:

– Policy Control Function (PCF): uses its information about
the slice usage (bandwidth, active services, clients, etc.)
to manage the slice/network behaviour. PCF provides and
maintains the policy rules to control plane functions;

– Session Management Function (SMF): supports session
management, selection, and control of user plane
functions, downlink data notification, and roaming;

– User Plane Functions (UPFs): handle the user plane
path of Packet Data Unit (PDU) sessions. UPF selection
is performed by the SMF;

– Network Data Analytics Function (NWDAF): repre-
sents the operator managed network analytics logical

9https://www.3gpp.org/

control, and provides slice specific network data analyt-
ics.

These components are directly related to our Predictor
Framework (PF). Our PF can be seen as an implementation
of NWDAF. This architecture has been implemented in
Mobilizer 5G Project,10 a portuguese 5G project that aims
to foster 5G implementation and deployment in Portugal.
Our prediction framework has been deployed in this
architecture and has been integrated with both Assurance
and PCF modules. These modules are implemented in
Docker containers, and orchestration, management, and
automation of network and edge computing services is
performed through ONAP.11

Figure 10 depicts a simplified version of the 5G archi-
tecture deployed in our premises. To illustrate the function-
alities of PF, we exemplify an anomaly forecast potentially
caused by two KPIs that can affect QoS/QoE in a use case
of a virtual Video Coding scenario (VidCod). Policer, end-2-
end Service Orchestrator (E2E SO), and Network Function
Virtualization Orchestrator (NFVO) are the entities needed
to orchestrate the VidCod services in Edge DC1 and DC2.

The Prediction API of the PF receives both KPIs (KPI
a and KPI b) from the Assurance module, and activates
two instances of the Metric Predictor Component (MPC)
through the Predictor Message Broker (PMB). Each of
the instances, MPC A and MPC B, evaluates the received
KPIs against the expected behaviour model (learned over
time). The KPI a evaluated by MPC A could be E-UTRAN
radio access bearer (E-RAB), and Circuit Switched Fallback
(CSFB) could be used as KPI b in MPC B. If any instances
of MPC predict that link 1 (L1—red line in Fig. 10) has
some type of anomaly, they send a notification to the PCF.

10https://5go.pt
11https://www.onap.org/

https://5go.pt
https://www.onap.org/
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The PCF and SMF do all the preparation for changing the
traffic from L1 to L3-L2 (blue lines). The intelligence of
this operation lies in the fact that the PF does not recognise
anomalies when they are occurring, but rather tries to
predict the occurrence of the anomaly in the near future.
Upon receiving the prediction, the PCF, considering the
current slice status (bandwidth, services, options), can act
preventively by changing the slice policy, or even indicating
the need for more resources to the orchestrator. The result
of this joint operation can prevent the anomaly from
occurring, and consequently, maintain the slice’s QoS/QoE
and consequently the entire network.

Our framework was designed to be easy to use (no
requirements on programming knowledge), easy to deploy
and can be used in automated deployment workflows, and
lightweight to work in slices. The framework is modular in
its components, since it is implemented with microservices,
and it is able to train and use multiple prediction
models simultaneously, an essential characteristic for 5G
environments when there are many time series systems.

7 Conclusion

Understanding the causes of events in a network, such as
low accessibility, helps the network operators to forecast
and avoid them to happen, by adjusting network resources
that influence their causes. In this work, the goal was to
determine the causes of reduced network accessibility in 4G
networks, using only historic data.

Two different analysis were made. Besides analyzing the
causes of reduced accessibility in the whole network, it
was also analyzed the causes of reduced accessibility for
each cell. The results showed that the causes of reduced
accessibility for each analysis are very different. While
for the overall network, the KPIs that most influence
the accessibility are the number of failure handovers, the
number of phone calls and SMSs in the network, the overall
download volume, and the availability of the cells; the KPIs
that most influence the accessibility of each cell are related
with the number of users in a cell and its download volume.
For a network operator, it is important to know if it is
important to monitor low accessibility in a cell, in a network,
or in both, to make the right measurements in the network.
In addition, we ended our considerations with a discussion
of the requirements of 5G networks, where proactivity is
mandatory.

As future work, the next step will be to detect the patterns
of those KPIs that indicate future low accessibility, to be
able to predict it and adapt the network to prevent it to
happen. For example, if the network operator knows that
the network accessibility will be lower in the next hour
when the number of handover failures intrafrequency and

the maximum connected users both exceed a threshold, he
can take proactive measures to adapt the network and avoid
the low accessibility.
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